

Lecture Notes in Computer Science 3556
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Hubert Baumeister Michele Marchesi
Mike Holcombe (Eds.)

Extreme Programming
and Agile Processes
in Software Engineering

6th International Conference, XP 2005
Sheffield, UK, June 18-23, 2005
Proceedings

13

Volume Editors

Hubert Baumeister
Ludwig-Maximilians-Universität München
Institut für Informatik
Oettingenstr. 67, 80538 München, Germany
E-mail: baumeist@informatik.uni-muenchen.de

Michele Marchesi
University of Cagliari
DIEE, Department of Electrical and Electronic Engineering
Piazza d’Armi, 09123 Cagliari, Italy
E-mail: michele@diee.unica.it

Mike Holcombe
University of Sheffield, Department of Computer Science
Regent Court, 211 Portobello Street, Sheffield, S1 4DP, UK
E-mail: m.holcombe@dcs.shef.ac.uk

Library of Congress Control Number: 2005927234

CR Subject Classification (1998): D.2, D.1, D.3, K.6.3, K.6, K.4.3, F.3

ISSN 0302-9743
ISBN-10 3-540-26277-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26277-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11499053 06/3142 5 4 3 2 1 0

Preface

Extreme Programming has come a long way since its first use in the C3 project
almost 10 years ago. Agile methods have found their way into the mainstream,
and at the end of last year we saw the second edition of Kent Beck’s book on
Extreme Programming, containing a major refactoring of XP.

This year, the 6th International Conference on Extreme Programming and
Agile Processes in Software Engineering took place June 18–23 in Sheffield. As
in the years before, XP 2005 provided a unique forum for industry and academic
professionals to discuss their needs and ideas on Extreme Programming and ag-
ile methodologies. These proceedings reflect the activities during the conference
which ranged from presentation of research papers, invited talks, posters and
demonstrations, panels and activity sessions, to tutorials and workshops. In-
cluded are also papers from the Ph.D. and Master’s Symposium which provided
a forum for young researchers to present their results and to get feedback.

As varied as the activities were the topics of the conference which covered the
presentation of new and improved practices, empirical studies, experience reports
and case studies, and last but not least the social aspects of agile methods.

The papers and the activities went through a rigorous reviewing process.
Each paper was reviewed by at least three Program Committee members and
was discussed carefully among the Program Committee. Of 62 papers submitted,
only 22 were accepted as full papers.

We would like to sincerely thank the several chairs and the members of the
Program Committee for their thorough reviews and dedicated involvement in
shaping the contents of the conference. We would also like to thank the authors,
the workshop and activity leaders, the tutorial speakers, the panelists, those
who served on the various committees, our sponsors, those who offered their
experience of running previous XP conferences, the staff of Sheffield University
and, last but not least, everyone who attended.

April 2005 Hubert Baumeister
Michele Marchesi

Mike Holcombe

Organization

XP 2005 was organized by Sheffield University.

Executive Committee

Conference Chair Michele Marchesi (Italy)
Local Chair Mike Holcombe (UK)
Program Chair Hubert Baumeister (Germany)
Tutorials Co-chairs Geoffrey Bache (Sweden)

Emily Bache (Sweden)
Workshops Chair Vera Peeters (Belgium)
Panel Co-chairs David Hussman (USA)

David Putman (UK)
Ph.D. Symposium Chair Sandro Pinna (Italy)
Posters Chair Barbara Russo (Italy)
Sponsorship Chair Steven Fraser (USA)
Communications Chair Erik Lundh (Sweden)
Social Activities Chair Nicolai Josuttis (Germany)

VIII Organization

Program Committee

Alberto Sillitti (Italy)
Ann Anderson (USA)
Barbara Russo (Italy)
Bernhard Rumpe (Germany)
Charlie Poole (USA)
Chet Hendrickson (USA)
Daniel Karlström (Sweden)
David Hussman (USA)
Diana Larsen (USA)
Dierk König (Switzerland)
Don Wells (USA)
Erik Lundh (Sweden)
Francesco Cirillo (Italy)
Frank Westphal (Germany)
Giancarlo Succi (Italy)
Helen Sharp (UK)
Jim Highsmith (USA)
Joe Bergin (USA)
John Favaro (Italy)
Joshua Kerievsky (USA)
Jutta Eckstein (Germany)
Laurent Bossavit (France)
Laurie Williams (USA)

Linda Rising (USA)
Marco Abis (Italy)
Martin Lippert (Germany)
Mary Poppendieck (USA)
Michael Hill (USA)
Nicolai Josuttis (Germany)
Paul Grünbacher (Austria)
Pekka Abrahamsson (Finland)
Rachel Davis (UK)
Rick Mugridge (New Zealand)
Ron Jeffries (USA)
Sandro Pinna (Italy)
Scott W. Ambler (USA)
Sian Hopes (UK)
Steve Freeman (UK)
Steven Fraser (USA)
Till Schümmer (Germany)
Tim Mackinnon (UK)
Vera Peeters (Belgium)
Ward Cunningham (USA)
Yael Dubinsky (Israel)

Referees

Michael Barth
Phil McMinn

Tom Poppendieck
Greg Utas

Table of Contents

Experience Reports

Lean Software Management Case Study: Timberline Inc. 1
Peter Middleton, Amy Flaxel, and Ammon Cookson

XP South of the Equator: An eXPerience Implementing XP in Brazil 10
Alexandre Freire da Silva, Fábio Kon, and Cicero Torteli

Introducing Extreme Programming into a Software Project
at the Israeli Air Force . 19

Yael Dubinsky, Orit Hazzan, and Arie Keren

The Agile Journey –
Adopting XP in a Large Financial Services Organization 28

Jeff Nielsen and Dave McMunn

New Insights

From User Stories to Code in One Day? . 38
Micha�l Śmia�lek

Evaluate XP Effectiveness Using Simulation Modeling 48
Alessandra Cau, Giulio Concas, Marco Melis, and Ivana Turnu

Agile Security Using an Incremental Security Architecture 57
Howard Chivers, Richard F. Paige, and Xiaocheng Ge

Quantifying Requirements Risk . 66
Fred Tingey

Social Issues

Social Perspective of Software Development Methods:
The Case of the Prisoner Dilemma and Extreme Programming 74

Orit Hazzan and Yael Dubinsky

A Framework for Understanding the Factors Influencing Pair
Programming Success . 82

Mustafa Ally, Fiona Darroch, and Mark Toleman

Empirical Study on the Productivity of the Pair Programming 92
Gerardo Canfora, Aniello Cimitile, and Corrado Aaron Visaggio

The Social Side of Technical Practices . 100
Hugh Robinson and Helen Sharp

X Table of Contents

Testing

A Survey of Test Notations and Tools for Customer Testing 109
Adam Geras, James Miller, Michael Smith, and James Love

Testing with Guarantees and the Failure of Regression Testing
in eXtreme Programming . 118

Anthony J.H. Simons

Examining Usage Patterns of the FIT Acceptance Testing Framework 127
Kris Read, Grigori Melnik, and Frank Maurer

Agile Test Composition . 137
Rick Mugridge and Ward Cunningham

Tools

E-TDD – Embedded Test Driven Development a Tool
for Hardware-Software Co-design Projects . 145

Michael Smith, Andrew Kwan, Alan Martin, and James Miller

Multi-criteria Detection of Bad Smells in Code with UTA Method 154
Bartosz Walter and B�lażej Pietrzak

An Eclipse Plugin to Support Agile Reuse . 162
Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick

Case Studies

An Approach for Assessing Suitability of Agile Solutions: A Case Study . . . 171
Minna Pikkarainen and Ulla Passoja

XP Expanded: Distributed Extreme Programming . 180
Keith Braithwaite and Tim Joyce

A Case Study on Naked Objects in Agile Software Development 189
Heikki Keränen and Pekka Abrahamsson

Invited Talks

Extreme Programming for Critical Systems? . 198
Ian Sommerville

That Elusive Business Value: Some Lessons from the Top 199
John Favaro

Agility – Coming of Age . 200
Jutta Eckstein

Another Notch . 201
Kent Beck

Table of Contents XI

Posters and Demonstrations

A Process Improvement Framework for XP Based SMEs 202
Muthu Ramachandran

Standardization and Improvement of Processes and Practices
Using XP, FDD and RUP in the Systems Information Area
of a Mexican Steel Manufacturing Company . 206

Luis Carlos Aceves Gutiérrez, Enrique Sebastián Canseco Castro,
and Mauricio Ruanova Hurtado

Multithreading and Web Applications: Further Adventures
in Acceptance Testing . 210

Johan Andersson, Geoff Bache, and Claes Verdoes

Using State Diagrams to Generate Unit Tests
for Object-Oriented Systems . 214

Florentin Ipate and Mike Holcombe

The Positive Affect of the XP Methodology . 218
Sharifah Lailee Syed-Abdullah, John Karn, Mike Holcombe,
Tony Cowling, and Marian Gheorge

Adjusting to XP: Observational Studies of Inexperienced Developers 222
John Karn, Tony Cowling, Sharifah Lailee Syed-Abdullah,
and Mike Holcombe

An Agile and Extensible Code Generation Framework 226
Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack

UC Workbench – A Tool for Writing Use Cases
and Generating Mockups . 230

Jerzy Nawrocki and �Lukasz Olek

Desperately Seeking Metaphor . 235
Ben Aveling

Agile Testing of Location Based Services . 239
Jiang Yu, Andrew Tappenden, Adam Geras, Michael Smith,
and James Miller

Source Code Repositories and Agile Methods . 243
Alberto Sillitti and Giancarlo Succi

Writing Coherent User Stories with Tool Support . 247
Micha�l Śmia�lek, Jacek Bojarski, Wiktor Nowakowski,
and Tomasz Straszak

BPUF: Big Picture Up Front . 251
Frank Keenan and David Bustard

XII Table of Contents

Agile Development Environment for Programming and Testing (ADEPT) –
Eclipse Makes Project Management eXtreme . 255

Mike Holcombe and Bhavnidhi Kalra

Tailoring Agile Methodologies to the Southern African Environment 259
Ernest Mnkandla, Barry Dwolatzky, and Sifiso Mlotshwa

Panels and Activities

XP/Agile Education and Training . 263
Angela Martin, Steven Fraser, Rachel Davies, Mike Holcombe,
Rick Mugridge, Duncan Pierce, Tom Poppendieck, and Giancarlo Succi

Off-Shore Agile Software Development . 267
Steven Fraser, Angela Martin, Mack Adams, Carl Chilley,
David Hussman, Mary Poppendieck, and Mark Striebeck

The Music of Agile Software Development . 273
Karl Scotland

The XP Game . 274
Pascal Van Cauwenberghe, Olivier Lafontan, Ivan Moore,
and Vera Peeters

Leadership in Extreme Programming . 276
Kent Beck, Fred Tingey, John Nolan, and Steve Freeman

Tutorials

Agile Project Management . 277
Ken Schwaber

Expressing Business Rules . 278
Rick Mugridge

Introduction to Lean Software Development – Practical Approaches
for Applying Lean Principles to Software Development 280

Mary Poppendieck and Tom Poppendieck

The Courage to Communicate:
Collaborative Team Skills for XP/Agile Teams . 281

Diana Larsen

Test-Driven User Interfaces . 285
Charlie Poole

The XP Geography: Mapping Your Next Step,
a Guide to Planning Your Journey . 287

Kent Beck

Table of Contents XIII

Workshops

Lightning Writing Workshop Exchange Ideas
on Improving Writing Skills . 288

Laurent Bossavit and Emmanuel Gaillot

The Coder’s Dojo – A Different Way to Teach and Learn Programming . . . 290
Laurent Bossavit and Emmanuel Gaillot

Informative Workspace
“Ways to Make a Workspace that Gives Your Team Useful FeedBack” 292

Rachel Davies and Tim Bacon

Exploring Best Practice for XP Acceptance Testing . 294
Geoff Bache, Rick Mugridge, and Brian Swan

Hands-on Domain-Driven Acceptance Testing . 296
Geoff Bache, Rick Mugridge, and Brian Swan

How to Sell the Idea of XP to Managers, Customers and Peers 299
Jan-Erik Sandberg and Lars Arne Sk̊ar

Agile Contracts –
How to Develop Contracts that Support Agile Software Development 302

Mary Poppendieck and Tom Poppendieck

When Teamwork Isn’t Working . 303
Tim Bacon and Dave Hoover

The Origin of Value: Determining the Business Value
of Software Features . 305

David L. Putman and David Hussman

The Drawing Carousel: A Pair Programming Experience 308
Vera Peeters and Peter Schrier

Agile Development with Domain Specific Languages:
Scaling Up Agile – Is Domain-Specific Modeling the Key? 311

Alan Cameron Wills and Steven Kelly

Ph.D. and Master’s Symposium

A Thinking Framework for the Adaptation
of Iterative Incremental Development Methodologies . 315

Ernest Mnkandla

Exploring XP’s Efficacy in a Distributed Software Development Team 317
Alessandra Cau

XIV Table of Contents

Agile Methods for Embedded Systems . 319
Dirk Wilking

Tool Support for the Effective Distribution of Agile Practice 321
Paul Adams and Cornelia Boldyreff

The Software Hut – A Student Experience of eXtreme Programming
with Real Commercial Clients . 323

Bhavnidhi Kalra, Chris Thomson, and Mike Holcombe

Eclipse Platform Integration of Jester – The JUnit Test Tester 325
Simon Lever

Extreme Programming: The Genesys Experience . 327
Susheel Varma and Mike Holcombe

Shared Code Repository: A Narrative . 329
Susheel Varma and Mike Holcombe

Author Index . 331

p.middleton@qub.ac.uk

amy.flaxel@timberline.com

ammonc@lean360.com

XP South of the Equator:
An eXPerience Implementing XP in Brazil

Alexandre Freire da Silva1, Fábio Kon1, and Cicero Torteli2

1 Department of Computer Science of the University of São Paulo
{ale,kon}@ime.usp.br

http://www.ime.usp.br/~xp
2 Paggo Ltda.

torteli@paggo.com.br

http://www.paggo.com.br

Abstract. Many have reported successful experiences using XP, but we
have not yet seen many experiences adapting agile methodologies in de-
veloping countries such as Brazil. In a developing economy, embracing
change is extremely necessary. This paper relates our experience success-
fully introducing XP in a start-up company in Brazil. We will cover our
adaptations of XP practices and how cultural and economical aspects
of the Brazilian society affected our adoption of the methodology. We
will discuss how we managed to effectively coach a team that had little
or no previous skill of the technologies and practices adopted. We will
also cover some new practices that we introduced mid-project and some
practices we believe emerged mostly because of Brazilian culture. The
lessons we learned may be applicable in other developing countries.

1 Introduction

There are many reports of successful experiences introducing XP, both in re-
search and industrial contexts, throughout the northern hemisphere. There have
been numerous accounts of success in the USA, Finland, Sweden, England, Spain,
Italy and Japan[1–7]. Closer to our reality, there is a report of introducing only
one of XP practices in developing areas in China [8]. However, there is little
recorded evidence of successful implementations of XP in the Southern Hemi-
sphere and in developing economies such as Brazil, specially adopting all of XP
original practices[9].

Learning to adapt to change is specially important in a developing economy
such as ours. Businesses come and go rapidly, and fluctuations in the economy
have even caused our currency’s name and value to change twice in a single
decade. Good developers are hard to find, and many enterprises survive through
constant recycling of interns. Low salaries (ranging from USD 100 to USD 2000
per month) reflect an untrained work force, composed mostly of interns making
a little more than USD 200 a month, and a culture of constant people turnover.
Tools and frameworks have scarce documentation in Portuguese, which lead to
many weak developers in the market.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 10–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

XP South of the Equator: An eXPerience Implementing XP in Brazil 11

Also, there are some cultural aspects of a tropical country that have impact
on software development industries. According to Seŕgio Buarque de Holanda’s
Cordial Man theory[17], brazilians react from their hearts, being passionate in
all aspects of life, developing a need to establish friendly contacts, create inti-
macy, and shorten distances. Brazilians reject last names, referring to everyone
by their nicknames. We reject formalities, even in the workplace. We are inca-
pable of following a hierarchy, of obeying too rigid a discipline. This has positive
impacts, brazilians tend to be open-minded, creative, friendly, and collaborative.
Teams tend to get along well and work together having fun. As a multi-cultural
and mixed society we tend to welcome change and get along very well in the
workplace. Disadvantages also exist, compared to most cultures from northern
hemispheres, we tend not to be punctual and constantly miss deadlines. Some
mention fear that XP is heavily based on north-american culture and therefore
would not work on a very different culture such as ours. Kent Beck guesses that
the biggest disadvantage for XP in Brazil is exactly the lack of commitment to
deadlines (even when they might be exceeded because the team is having fun)
[10]. Our experience shows that this is not the case.

Developing high quality software, on time and on budget is a must if one
plans to survive in this context. As such, the first author was invited to help
introduce XP in a start-up enterprise, Paggo, trying to get into the credit card
business. From the beginning, many challenges were present; we believed that
the two most difficult were going to be the heterogeneous aspect of the team,
composed of developers with different skills, from interns with little or no expe-
rience programming to seniors accustomed with their own way of programming,
and the fact that our coach could not be present full-time because of the limited
budget. We had high hopes since adopting XP was a suggestion from a team
member and everyone in the team accepted the challenge with no knowledge of
the difficult times ahead.

We have successfully trained our team in all of XP practices and consider
the project to be a success. This paper will briefly outline the 6 months in which
we trained our team in the practices and in most technologies they would need
to use, describing changes encountered along the way and how we coped with
them. We will then consider the adaptations we performed for XP practices and
lessons learned in the experience. We will list some other valuable techniques
implemented during the project and some special practices we believe are the
result of the cultural and social aspects of Brazil. We will then conclude with
some remarks that might be of value to similar attempts in developing countries.

2 Project Evolution

Paggo is a start-up venture in the credit card business. It attempted to go into
a very competitive market and its bets were in a new business model based
on new technologies and implementing an agile method so the enterprise could
have functioning software quickly, to secure more investments by reducing time-
to-market. Our main objective was to have an XP proficient team ready to be
independent from the coach within 6 months.

12 Alexandre Freire da Silva, Fábio Kon, and Cicero Torteli

The software to be developed was cutting-edge, using technologies such as
J2ME and J2EE and free and open source frameworks such as VRaptor, Hi-
bernate and JBoss. The project had many aspects, from a credit transaction
handler with high performance requirements, to mobile technology to be embed-
ded in cellular phones, and a dynamic Web site where customers could sign up
for credit cards and check their monthly balance.

The development team was really heterogeneous, skills ranged from interns
with almost no programming or OO knowledge to senior developers with years
of experience, we believed this would be a real obstacle to installing XP. How
to get everyone on board and at the same time address individual difficulties?
Even though every member was willing to work hard on implementing XP, there
were clear tendencies from some developers to be CowboyCoders [11] and many
did not yet have the skills necessary to do XP. In our favor one of the founders
of the company played an excellent in-house customer. A part-time consultant
was hired to mentor the less skilled in the team in topics ranging from Java
programming, OO, and the frameworks and technologies to be used in the project
and also coach the team in XP. In the beginning of the project another part-
time consultant was hired to help with the new technologies. By the end, two
more developers were hired as well, adapting quickly to our XP environment and
writing production code within one week of beginning work, contributing with
very relevant code already in the second week. This was due to the team being
comfortable with XP by the time they were hired and the fact that one of them
took an undergraduate course in XP [14].

We decided to implement all of XP practices as proposed by Beck[9] at once,
knowing that some would take more time to reach a mature and acceptable
level. We managed to go through 12 releases, using mostly two week iterations.
We produced four applications, successfully implementing 269 stories out of an
original 340, of which 42 were later discarded or deemed unnecessary by the cus-
tomer. From a technical point of view, we delivered 90% of wanted functionality,
fully tested and free of bugs. From a business perspective, the project was such
a success that the company was sold for a good value and restructured to focus
on software development with the same XP team.

During the first two months we fully explored all of XP practices but tread
lightly into practices that demanded more knowledge such as test-first design
and refactoring. In the next 4 months we trained the team in some OO patterns
and in the open-source frameworks used. As the team became more comfortable
with patterns and advanced OO techniques so did our testing and refactoring
practice evolve. After attending a local XP conference, the coach introduced
some new practices, most importantly the retrospective technique suggested by
Linda Rising[12] and analyzed in detail in [2]. We decided to use a slightly
modified version of the KJ method [13] using colored post-its grouped in positive
and negative findings by the development team. The introduction of this new
practice also had some unexpected results as discussed in Section 4.1. At the
end of the 5th month, the company had to cut expenses because it had not yet
secured a new investment. By this time the coach was satisfied with how our

XP South of the Equator: An eXPerience Implementing XP in Brazil 13

XP practices were being followed and it was decided that he would leave the
team. He then proceeded to help ensure that the team would be able to keep on
going without him as detailed in Section 4.4. Recently, an investment has been
secured and the company now plans to double its development team, we plan to
document this new effort in a future paper.

3 Adaptations to XP Practices

Customer Always Present. We were really lucky to have an inside customer
who wrote stories and was very much in favor of XP and enthusiastic about the
agile practices. He wrote acceptance tests and executed all of them after each
release. The customer was also available for our daily stand-up meetings (actually
running some of them when the coach could not be present) and re-prioritized
stories as time went by. This was very productive, as our team was learning to
estimate development effort, some estimates were really blown but, in the end
of a iteration, only stories that were not really important for the customer were
left out. In our experience a committed customer is essential, especially if the
team is composed of less skilled interns and can still let bugs escape tests and
badly estimate some stories.

Coding Standards. Coding standards were easy to implement, due to the fact
that most of the team was learning Java at the time. Standards were discussed
in meetings, mostly suggested by senior members of the team, and put on a
poster on the wall called “Team Arrangements”. It was straight forward to teach
and impose the standards through pair-programming. We believe calling the
standards arrangements, and being flexible about their adoption made them
easier to absorb by less experienced team members.

Continuous Integration. We had problems with continuous integration due to
the fact that most were learning how to use tools for version control. There
were a couple of times were code was actually lost during complicated merges.
As the team became more comfortable with these notions they suggested we
adopt Cruise Control, which we did to many benefits. Through our retrospective
meetings, we identified problems with this practice and took concrete actions
that helped us improve, such as having quick stand-up meetings when difficult
merges were about to happen.

Metaphor. We had no trouble to implement metaphor. This is mostly due to
our customer being available to give daily business explanations to the team
and, during planning games, agreeing on common metaphors. The fact that
team members were also helping each other learn OO concepts and frameworks
helped. Eg., as the team would learn about a particular pattern, we could easily
incorporate this abstraction in our metaphor.

Test Driven Development. In the early months of the project it was difficult to
write good tests that covered our demo application completely. Most developers
did not know how to write automated tests and we were dealing with relatively

14 Alexandre Freire da Silva, Fábio Kon, and Cicero Torteli

hard technology to test (eg., J2ME applications or serial device communication).
Part of the team did not have enough OO know-how for us to use techniques
such as MockObjects, so in the beginning we only had the customers manual
acceptance tests for feedback.Our coach decided to pair with developers when-
ever he could to teach testing techniques. We had difficulty with the less skilled
developers, especially the interns lacking OO knowledge, but a lot of resistance
was also encountered from the senior developer, who could not see benefits in
having automated tests for his code. After a couple of iterations and some failed
releases the team understood how important it was to have a full test suite,
covering all production code. What happened then was a truly “test-infected”
scenario, developers suddenly saw tests as an excellent tool and strived to excel
in this practice. We kept daily metrics for the number of tests created and they
started growing exponentially. It helped that the new developer, with previous
XP experience, was quick to develop intimacy with the team, and felt coura-
geous enough to rewrite all tests for a J2EE project when the customer saw the
need to code new features for it. At the end of the sixth month period, the team
was looking into technologies to automate the customer acceptance tests, this
was again an initiative of their own. We learned that teaching testing can be
difficult, especially with heterogeneous teams like ours, but having test metrics
helped everyone to be conscious about the problem.

Refactoring. Refactoring was also one of the hardest techniques to teach. In
the beginning, we did some minor refactorings to get the team to understand
their value, mostly cleaning up class and method names. During the project we
introduced agile modeling techniques[15] that were useful for us to discover areas
of our applications that could go through more extensive refactorings. We held
design meetings and used the white board to draw UML diagrams and decided,
as a team, where we should refactor. The senior developers were eager to refactor
but we found that the interns and junior developers did not want to refactor as
much, for they had not yet had time to grasp some more complex OO concepts.
It was helpful to have a tool such as Eclipse that would automate refactorings.
It made them easier to learn and gave the team more courage to execute them.

Small Releases. The project had 12 releases, most taking 2 weeks. If the customer
was not satisfied with the acceptance tests we had special 1-week “bug-fix”
releases . This was specially true in the beginning of the project when we did
not have enough tests and the developers were learning the technologies. We
developed an automated deployment system, composed of a development server,
a homologation server and a production server. After a release was tagged, it
would be automatically updated on the homologation server, which kept a recent
copy of the production server’s database. The acceptance tests were run in this
server and, if the client was satisfied, the release would be manually deployed on
the production server.

Planning Game. We had good planning games, the customer had interest in
commenting on previous releases and did not hesitate to change his mind. We

XP South of the Equator: An eXPerience Implementing XP in Brazil 15

divided a work day into 2 individual working hours and 3 pair-programming
sessions, estimating stories in terms of these sessions. If a story was estimated
in less than 1/4 of a session or more than 6 sessions it would be rewritten.
The client prioritized and grouped stories. As we were developing a couple of
applications simultaneously, we wrote stories for all of them, developers liked
being able to move from one project to another. As most of our releases had
a 2-week duration, we built a special calendar on the wall, where 10 days were
represented. After the planning game, we would place stories along the days
for the two weeks, starting with the highest customer priority, and fitting next
stories according to estimates of stories already on the board and our developer
resources. It was also used daily when we would review what stories we had
left, assign them to pairs and eventually re-manage other stories. We found this
to be a very efficient way to assign stories and keep track of progress. Latter
we used this board for our retrospective technique as described in Section 4.1.
Feedback from our retrospectives lead us to introduced some “studying stories”
where developers could take a few sessions to dedicate themselves to studying
new technologies as described in Section 4.3.

Sustainable Pace. This was a hard practice to follow, mostly due to economic
reasons. In Brazil, people are willing to work extra hours (without payment)
and this was not any different in our team, we counted with a couple of extra
hours per developers weekly. The fact that interns and trainees were not present
full-time encouraged this, as they were eager to put in extra, unpayed, hours.

Pair Programming. In a economy were developer turnover is high, our customer
did not want any production code created individually, so he instated pair pro-
graming as a rule. Pair programming was very valuable to teach developers
testing and refactoring techniques, and our coach wished he had more time to
be able to pair even more with the team. Less skilled developers also benefited
from a hidden pair, Eclipse, it helped them to learn the language with it’s rapid
feedback about syntax mistakes and compilation problems. We encountered re-
sistance from the most senior developer, accustomed to working alone, he had
a passionate reaction to being forced to pair and others avoided pairing with
him. We also found that, although it was good to pair more experienced coders
with beginners for mentoring, sometimes it was more productive to let the less
experienced pair program on tasks that seniors found repetitive and boring.The
biggest advantage we found with pair programming was when hiring new de-
velopers, when they pair-programmed we were quick to identify if they would
adapt to the company’s structure and philosophy.

Simple Design. Simple Design was not trivial, but, as we were also teaching
developers how to design, we did accomplish a satisfactory simple design. Having
modeling meetings, as proposed by the agile modeling community, made it easier
to teach and discuss simple design, proposing refactorings upon the design that
had evolved so far.

16 Alexandre Freire da Silva, Fábio Kon, and Cicero Torteli

Collective Code Ownership. As we had a set of coding standards that was work-
ing, it was easy to implement collective code ownership. We found that the senior
developers were more comfortable with this practice, especially when they were
refactoring code produced by interns.

4 Other Practices

4.1 Retrospectives

We found retrospectives to be really valuable and greatly improved our commu-
nication. We used the same story board from our planning game to pin red or
blue post-its on the days we encountered nice or bad things to say about our
practices, at the begging of each week we would collect the post-its from the
previous one and have a retrospective meeting to discuss them.

Discussing our process and techniques helped developers to identify problem
areas and suggest solutions. In the beginning, we held weekly retrospectives
and came up with really good suggestions to fix problems. After some time,
however, the need for these meetings was lessened because we were good at
fixing problems, this has been pointed out by Cockburn [16].

Due to the proximity developed because of pair programming and the increase
in communication needs, the retrospective technique as it was done at Paggo
started to be used for personal differences. At some point in time the team
even took a cold shoulder approach to some of the developers. They did not
want to pair program with some specific members anymore. The rest of the
company realized that something was going on. In the meantime, a real paper
war developed on the board, with red notes flying in all directions, even posted
by people in the company outside of the development team. Our retrospective
technique had turned into an enormous gossip board, as brazilians, reacting
according to our hearts had shown it’s downside. The result was the invention
of a practice we call “dirty laundry meeting”

4.2 Dirty Laundry Meeting

After seeing that things were going astray with the team, the customer decided
to hold a meeting in which everyone was supposed to resolve their conflicts. This
meeting was called “dirty laundry meeting” because it was a chance for everyone
to say what was on their mind about others and walk away with a clean slate.

Team members, as expected by their brazilian culture, had grown closer,
making our work relationship almost a family one. This made this meeting very
emotional and intense, a couple of people even cried. It was a strange experience
we believe happens more often in countries like Brazil, derived from our social
and cultural inclinations. In this meeting we found a place to put our personal
differences in check and wash away everything that was bothering us. It resolved
most issues but was a very extreme practice and we do not advise that it should
happen frequently. Sometimes it is necessary, producing nice results, if people

XP South of the Equator: An eXPerience Implementing XP in Brazil 17

are willing to be frank and share their feelings. We believe that certain personal
differences that affect productivity can stay hidden for long periods of time in
most corporations, but will surface very fast with XP. These will have to be
resolved or will affect production, and dirty laundry meetings are an interesting
solution.

4.3 Specialists and Study Time

Given the heterogeneous nature of our team it was clear that some people had a
lot to learn that others could teach. We came up with the concept of specialists,
not in the sense that they would do all stories related to their field of expertise,
they were people that the team could count on, knowledgeable about latest
advances on their field and capable of solving hard problems encountered in
stories related to their areas. The need for specialists arose from our retrospective
meetings. Developers said that they were more motivated to work on things they
liked and they would like time to learn more and research. So we instituted some
special “research stories”. The specialists could take these stories and have a
break from pair programming in a couple of study sessions when they would
research technologies of interest and program spikes.

The specialists brought some fresh air into the team and reduced the burden
of everyone having to study all new technologies. They did not have special rights
to stories in their areas. In fact they were discouraged from taking these stories
at all. They were available to pair program when someone had trouble in their
areas of research and also conducted seminars to teach the rest of the team what
they were learning.

4.4 Coach of the Week

Approaching the end of the sixth month the company no longer needed the pres-
ence of the external mentor to play the role of coach any more. Most developers
were comfortable with the process and had mastered the technologies and tech-
niques used. As such the coach started to plan his leave, the team had to be
able to do XP on their own. The coach started a practice where the team would
elect a developer to play the role of the coach for a week. After a couple of weeks
most of the team had been in the role of coach (with the mentor’s supervision)
and were ready to walk on their own.

5 Conclusions

The chaotic economy and culture of Brazil have impacts on implementing XP. We
have successfully used all of XP practices, adopted most of them and even came
up with some unique practices of our own. XP helped us adapt quickly to the
constant changes in the economic reality of a developing country. Even though
our team was very heterogeneous and had many lesser skilled developers, we
managed to help them evolve and fit in to the team. By promoting everyone’s

18 Alexandre Freire da Silva, Fábio Kon, and Cicero Torteli

participation, XP can help all to successfully learn practices and technologies
due to an open, motivating and friendly environment. In a market were teams
have to grow quickly to be competitive, companies can suffer from hiring the
wrong people. XP helped us welcome newcomers, and find out quickly if they
were going to fit in. We believe XP is harder to implement when the team is
heterogeneous as ours, but it is possible to do with patience and brazilian passion.
When constantly refining one’s practices through retrospectives, politics and
personal conflicts can not go unnoticed for long, this allows a company to take
quick measures to maintain productivity. We believe other developing countries
could benefit from our experience.

References

1. A. Fuqua and J. Hammer, “Embracing Change: An XP Experience Report”, XP
2003, Lecture Notes in Computer Science, vol. 2675, pp. 298-306. Springer, 2003.

2. O. Salo, K. Kolehmainem, P. Kyllönem, J. Löthman, S. Salmijärvi, and P. Abra-
hamsson, “Self-Adaptability of Agile Software Processes: A Case on Post-iteration
Workshops”, XP 2004, Lecture Notes in Computer Science, vol. 3092, pp. 184-193.
Springer, 2004.

3. H. Svensson, “A Study on Introducing XP to a Software Development Company”,
XP 2003, Lecture Notes in Computer Science, vol. 2675, pp. 433-434. Springer,
2003.

4. T. Mackinnon, “XP - Call in the Social Workers”, XP 2003, Lecture Notes in
Computer Science, vol. 2675, pp. 288-297. Springer, 2003.

5. T. Bozheva, “Practical Aspects of XP Practices”, XP 2003, Lecture Notes in Com-
puter Science, vol. 2675, pp. 360-362. Springer, 2003.

6. W. Ambu and F. Gianneschi, “Extreme Programming at Work”, XP 2003, Lecture
Notes in Computer Science, vol. 2675, pp. 347-350. Springer, 2003.

7. Y. Kuranuki and K. Hiranabe, “XP “Anti-Practices” : anti-patterns for XP prac-
tices”, presented at The Agile Development Conference, Salt Lake City, Utah,
2004.

8. K. Lui and K. Chan, “Test Driven Development and Software Process Improvement
in China”, XP 2004, Lecture Notes in Computer Science, vol. 3092, pp. 219-222.
Springer, 2004.

9. K. Beck, Extreme Programming Explained, Embrace Change. Addison Wesley,
2000.

10. K. Beck in Extreme Programming Aprenda como encantar seus usuários desenvol-
vendo software com agilidade e alta qualidade by V. Teles. Novatec, 2004.

11. “Cowboy Coder” online at http://c2.com/cgi/wiki?CowboyCoder
12. L. Rising and E. Derby, “Singing the Songs of Project Retrospectives: Patterns

and Retrospectives”, Cutter IT Journal, pp. 27-33, September 2003.
13. R. Scupin, “The KJ Method: A Technique for Analyzing Data Derived from

Japanese Ethnology”, Human Organization, vol. 56, pp. 65-72, 1996.
14. F. Kon, A. Goldman, P. Silva, and J. Yoder, “Being Extreme in the Classroom:

Experiences Teaching XP”, Journal of the Brazilian Computer Society, 2004.
15. S.W. Ambler, Agile Modeling. John Wiley & Sons, 2002.
16. A. Cockburn, Agile Software Development. Addison Wesley, 2002.
17. S.B. de Holanda, Ráızes do Brasil. Companhia das Letras, 1995.

yael@cs.technion.ac.il

oritha@techunix.technion.ac.il

The Agile Journey

Adopting XP in a Large Financial Services Organization

Jeff Nielsen and Dave McMunn

Digital Focus, 13655 Dulles Technology Drive
Herndon, VA 20171, USA

{jeff.nielsen,dave.mcmunn}@digitalfocus.com
http://www.digitalfocus.com

Abstract. On January 14, 2004, two vice presidents met with a group
of directors, project managers, and developers, and indicated their de-
sire to embrace agile software development as “the way forward” in their
organization. This was not the beginning of this company’s adoption of
XP and Agile Methodologies, but rather the culmination of almost two
and a half years of learning, experimentation, prototyping, and promo-
tion. Making change “stick” in any large organization is problematic, and
dramatically changing the way a risk-averse, highly-regulated company
develops software requires more than just a successful pilot and a cou-
ple of months of coaching. This experience report documents the “agile
journey” undertaken by one such corporation between 2001 and 2004.
They began by outsourcing a small effort to an XP-proficient consulting
firm, and proceeded to use agile techniques on a series of increasingly-
significant efforts, allowing sufficient time for the new approach to gain
acceptance. In retrospect, all parties involved now believe that the slow,
gradual approach to XP adoption – building on incremental successes
project by project – was the key to its success.

1 Introduction

Introducing change in a large organization is difficult. While successful proto-
types or pilot projects can demonstrate new techniques and ways of working,
making any kind of change “stick” in a long-term way requires something more.
This report details how one company made a lasting change in the way it devel-
ops software. Between 2001 and 2004 this organization transformed itself into one
where business and IT collaborate closely to produce new releases of defect-free
applications on a quarterly (or more frequent) basis.

The organization in question is part of a large financial services firm. This
particular group handles all of the business related to loans for multifamily
properties, and will be referred to hereafter simply as “Multifamily.”

Multifamily has a dedicated IT staff (currently around 100) that is responsi-
ble for both new development and ongoing maintenance. Multifamily has been
developing software applications to complement its operational efforts for al-
most two decades. For much of that time, it followed a traditional, phase-based
approach to software development.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 28–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Agile Journey 29

But, as in many organizations following this approach, a good deal of tension
had developed over the years between the IT and business personnel. IT was
frustrated with what it saw as a never-ending succession of requirements changes
from business people who could “not make up their minds.” Business, for its part,
felt the all-too-common frustrations with the pace and cost of development. They
had a difficult time understanding why putting their new ideas into production
always took longer and cost more than seemed reasonable. As the 21st century
began, both business and IT realized that something needed to change.

2 The Agile Answer

Multifamily found its answer in the agile software development movement, which
it learned about almost by chance. In the fourth quarter of 2001, the business
needed to put a small system in place with as much speed, and as little oper-
ational risk, as possible. They engaged Digital Focus to meet that need. While
Digital Focus’s solution satisfied the demand for rapid, reliable development, it
also had the effect of introducing Multifamily to the advantages of an agile ap-
proach. Digital Focus had been experimenting with Extreme Programming (XP)
for the preceding two years. After initial success, it had made the conversion to
XP-style development for all of its client work.

This outsourced project became the first step of a multi-year “agile journey”
undertaken by Multifamily. Accepting an iterative, incremental approach at this
organization would take time, and would require overcoming some specific chal-
lenges. One of these was a bias towards large, multi-year architectural efforts.
Another was the sensitive, regulated nature of the environment in which they
worked. Had agile-development advocates attempted to effect change all at once
or on a large scale, the reception would have been strongly negative, with little
chance of long-term success.

With a combination of innovation and patience, however, agile champions at
Digital Focus worked with allies in Multifamily to facilitate the introduction of
XP. The solution was to start with a modest effort, and then build on small,
tangible successes. Through a series of increasingly-significant initiatives over a
three-year timeframe, Digital Focus was able to demonstrate the effectiveness of
agile software development and continue to reinforce a trust-based partnership
with Multifamily. In the inaugural effort of 2001, Digital Focus led the charge
while Multifamily observed the results; by 2004, developers at Multifamily had
become full-fledged agile experts. Here’s how it happened.

3 Acclimating to Agile Development – Project by Project

3.1 Deal Registration (Built October – December, 2001)

Initial Project Expectations. As mentioned above, Multifamily’s first expo-
sure to XP was through an outsourcing effort. They needed a tactical applica-
tion that would provide more visibility into their lending pipeline, and they were

30 Jeff Nielsen and Dave McMunn

willing to outsource based on the promise of rapidly-developed new functionality
delivered on time and in budget.

Digital Focus was contracted to build the application. Multifamily contri-
buted a single developer and tester to the team (to provide some continuity
for future deployment and maintenance). Because of the fixed-time, fixed-price
contract, Multifamily was less concerned with the specific development process
that would be followed. As long as the deliverables were met, Digital Focus was
free to execute the project using its own XP-based methodology.

Introducing Agile Practices. Because the particularities of XP were initially
downplayed by Digital Focus team members, Multifamily was exposed to agile
practices only indirectly through their involvement in the development effort.
The critical practices used by the team included co-location in a shared team
room, decomposition of the application’s functionality into user stories, test-
driven development (TDD), continuous integration, incremental design, and on-
going functional testing. The single Multifamily developer was able to experience
these practices first-hand and to see how an application could be developed and
tested incrementally.

The business-side professionals were also introduced gradually to some of
these ideas. A noticeable difference for them was the way that the requirements
discussions continued throughout the project. The team’s conscious decision to
build the application incrementally and to concentrate first on those stories with
the highest business value meant that the greatest amount of attention was given
to the most significant features. Because of this, the user acceptance testing
phase at the end of the project was greatly accelerated, with the application
being deployed in just one week.

Result. While the focus of this initial effort was on building and deploying an
application rather than introducing agile concepts, exposure to these was a nat-
ural side effect. The business began to see how being more involved throughout
development could significantly shorten the traditional post-development activ-
ities. They also learned that by refining the detailed requirements just as the
development of those requirements was about to occur, they could get better
feedback and tune the application to more closely match their vision.

Although IT involvement with this project was minimal, they did get their
first look at XP in action. While Multifamily IT as a whole was still unsure about
the general applicability of agile methodologies, at least one of their developers
could now speak to the benefits she had observed firsthand. This exposure to
the ideas in a non-threatening way began to generate discussion and awareness.

Finally, this project laid an important foundation of trust between Digital
Focus and Multifamily, which would be crucial in moving forward.

3.2 Pricing (Built September, 2002 – January, 2003)

Initial Project Expectations. Midway through 2002, Multifamily began de-
velopment of an application to provide pricing information about potential deals.

The Agile Journey 31

The correct way to build this application was neither obvious nor without con-
troversy, since the pricing process was governed by an extensive set of rules and
relied heavily on human skill and judgment. Given the significance of the ap-
plication and the number of players involved, initial discussions about how the
system should behave produced more questions than answers.

Based on their past experience with Digital Focus, Multifamily business again
asked for help in working through the requirements and driving the delivery of
this particular system. Outsourcing the complete project, however, was not in
the plan. Business and IT personnel agreed that Multifamily IT needed to play
a significant role. The eventual contract specified that Digital Focus would take
charge of the web-based user interface pieces while a Multifamily team would
build the pricing “engine.” Implicit in this agreement was an understanding that
the two teams would work as closely together as possible.

Introducing Agile Practices. After some (persuasive) discussion, it was de-
cided that both teams would co-locate in a development area at Digital Focus.
This turned out to be a key decision. The two teams worked for the duration of
the project in a large room, which not only enhanced communication, but also
gave the Multifamily employees a “front-row seat” to observe the day-by-day
execution of XP practices. It wasn’t long before they began to appreciate the
benefits of working in this fashion and started trying to adopt many of the prac-
tices themselves – most importantly story-based planning and iterative delivery.
Training occurred naturally, as questions such as “What is a story?” and “How
do I size a story?” could be answered and then put into practice right away.

The Multifamily team also worked to adopt the practices of pair program-
ming, automated unit testing, and continuous integration. In terms of the latter,
it quickly became apparent that having a single codebase, repository, and build
process benefited everyone. The two teams together learned the practice of per-
forming iteration retrospectives. Through the use of the SAMOLO (Same As,
More Of, Less Of) technique, they fine-tuned their application of many of the
practices – e.g., how often they should pair. More importantly, they learned how
to continue improving the way that they worked together.

By the end of the project, the two teams were collaborating to a much larger
extent than anyone had imagined would happen. Developers frequently crossed
teams to pair on different stories, and producing a quality product became ev-
eryone’s main focus. Everyone looked forward to alternate Fridays, when both
teams celebrated their accomplishments together in an end-of-iteration ceremony
(including the tongue-in-cheek “end-of-iteration song”) and demonstration.

In interacting with the business, the teams tried to apply the lessons from
the previous Deal Registration project. Getting active business participation
throughout became a primary focus. For example, rather than deploying the
code only once (at the end of the project), the team insisted that the Pricing
application be deployed to the Multifamily testing environment after each itera-
tion. The project manager made a personal visit to each of the customer’s offices
at least once per iteration, to walk them through the latest system features.

32 Jeff Nielsen and Dave McMunn

Finally, the teams began exposing the business to the concepts of stories
and points. Within a fixed point budget, it was understood that the users could
choose the exact stories to be included in the final release. And rather than the
project manager determining the order of development, the users were encour-
aged to “drive” – selecting the specific stories to be tackled next. This alignment
of authority with responsibility was especially critical for this application, where
both requirements and priorities continued to change all through the project.

Result. By the end of the project, important progress had been made on sev-
eral fronts in the XP adoption process. Multifamily IT had learned that, by
using agile software development practices and techniques, they could develop
an application in an environment where the requirements were constantly in
flux. They learned that beginning development without having all of the re-
quirements “locked down” was not only possible but often desirable. They saw
firsthand the benefits of letting the users change their minds – leveraging the
continual learning instead of discouraging it.

From the business point of view, the users better understood the importance
of being involved throughout development. They also understood the value of
moving forward in short cycles, even as requirements were still being defined. And
they loved the ability to choose stories and control the release plan. Although
there was not enough time to build everything that seemed desirable (as usual),
they found that they could work together with IT to come up with creative
solutions that both met the budget and satisfied the most important needs.

The successful implementation of Pricing also piqued the interest of IT man-
agement. The Multifamily project manager and director had seen the effective-
ness of many of the XP practices. They were curious to explore how they might
be able to incorporate some of these practices at Multifamily. Doing so would
be the next step.

3.3 Waivers (Built April – August, 2003)

Initial Project Expectations. In the spring of 2003, Multifamily had made
a commitment to provide a Waivers application in time for a major summer
conference – then about four months away. Although a significant analysis and
prototyping effort had occurred, both business and IT were apprehensive because
two previous attempts to develop a similar application had failed.

Several factors combined to produce the ultimate project makeup. Budgets
were tight, which precluded the option of outsourcing; and there was a growing
desire to prove that agile development could work in-house at Multifamily. Nev-
ertheless, several Digital Focus personnel had been involved in the analysis and
had valuable domain knowledge about the users’ needs.

The final decision was to implement the project at Multifamily’s offices with
the leadership of two Digital Focus coaches. The coaches would drive the project,
but would be required to execute within Multifamily’s environment, using Multi-
family personnel, and integrating more closely with the rest of IT. Furthermore,

The Agile Journey 33

as an IT-managed project, the team would be required to demonstrate compli-
ance with the approved corporate methodology.

Introducing Agile Practices. Running an XP-style project on site at Multi-
family was challenging, from the simple necessity of finding space for the team to
pushing for new uses of the development servers. Although an empty office was
located to serve as a team room, it took more than four weeks to get permission
to re-configure the furniture appropriately. Being able to build and test daily in
multiple environments (contrary to the established usage model for the servers)
required the team to exercise both creativity and diplomacy.

Working inside the Multifamily environment also necessitated changes in
individual responsibilities. The database administrator, for example, had to get
used to the idea of the table structure changing every two weeks. The testers
needed to get comfortable with testing new stories daily, during the iteration,
rather than waiting for the code to be “done.”

Being on site, however, had huge advantages in terms of the team’s interaction
with the business users. It brought a whole new dynamic and level of visibility.
Contact was no longer limited to pre-scheduled meetings. Business people could
stop by the team room as often as they wanted, which they did with increasing
frequency.

Each visit allowed examination of “the wall,” a planning area in the team
room which displayed all of the stories on index cards. On the left-hand side of
a vertical line of masking tape were stories that the team had capacity to build
before the release date. On the right-hand side were those which would not fit.
As stories were added, removed, and split, the business people could easily work
with the developers to update the release plan (based on the team’s velocity) as
often as desired.

Finally, being on site allowed in-person participation by the business users
in the iteration kickoff and closeout meetings. (The previous projects had re-
quired the use of business proxies in these meetings.) The developers heard the
requirements for each story in the users’ own words and were able to ask ques-
tions interactively. The team found it very rewarding to be able to demonstrate
the new functionality each iteration to the paying customers. The business users
likewise appreciated getting to know the human side of the developers and being
able to join in on the end-of-iteration ceremonies.

Result. The Waivers project proved so successful that the overseeing Director of
IT became convinced of the benefits of adopting, in at least some form, the main
practices of XP. Importantly, he became the XP management champion for IT.
The project had proven that agile development could work (with some modifi-
cations) within the Multifamily environment and methodology constraints. The
various IT specialist groups – testers, database administrators, and configuration
managers – had shown that they could work together with the developers in an
iterative fashion. Furthermore, all involved recognized the tremendous improve-
ment in communication that occurred when the project team was physically
close to the business and could interact with them daily.

34 Jeff Nielsen and Dave McMunn

The director also better appreciated the challenges he would face trying to
bring agile practices into the mainstream at Multifamily. First, it would be
challenging to create a shared workspace for each team, since the prevailing
office layout at that time was not conducive to this. Second, it was obvious that
some re-definition of traditional roles (especially for testers) would need to occur.
Finally, having an XP team on site had created a significant amount of “buzz”
throughout IT and not all of it was positive. The general perception continued
to exist that an agile approach, while great for small projects, could not support
the development of significant, real-world applications. The next step, then, was
to identify a project that could address this broader concern.

3.4 HCD Front End (November, 2003 – April, 2004)

Initial Project Expectations. The project chosen was an ongoing effort that
had been using a RUP-based methodology. Within that team, it was widely
recognized that the current process was ineffective. The implementation had
fostered separate camps of analysts, developers, and testers (with the accompa-
nying sequence of handoffs); development was proceeding at a slow pace; and
relationships among the various parties were extremely strained.

Other factors made this project an ideal platform with which to validate the
director’s proposed hybrid between Multifamily’s existing practices and the agile
approach. It was a large, mission-critical application with lots of legacy code and
complex business rules. Any new development model would need to be able to
work with this type of application, accommodate the skill structure and roles of
existing team members, and be able to function under Multifamily leadership.

Digital Focus was asked to support the effort in a coaching role. The man-
date was to help Multifamily tailor and refine XP practices to fit within their
environment and with their teams. An additional objective was for the coaches
to mentor Multifamily leads to be able to take the reins as soon as possible.

Introducing Agile Practices. Digital Focus began by conducting an assess-
ment of the current state of the team. They proposed a tailored implementation
plan that would address the highest pain points first. Multifamily management
then augmented the existing team with additional developers who were already
experienced in the agile approach (from the previous projects), placing them in
key leadership positions.

It was not immediately clear how to find a way for this new (much larger)
team to sit together. The expanded team included analysts from the Multifamily
business side, and some “commuting compromise” was required to settle on a
work site. In the end, a couple of walls even had to be knocked down to create
team rooms that were large enough.

Introducing the specific agile practices was done iteration by iteration, with
training sessions and one-on-one coaching provided by Digital Focus. The first
priority was to get a continuous integration build running. Having an automated
10-minute build that could be pushed to the testing environment at will trans-
formed a labor-intensive process into a trivial one. After this, the few existing

The Agile Journey 35

unit tests were resurrected, and a norm was established that no new or changed
code could be checked in without test coverage. Then came TDD, simple design,
coding standards, pair programming, etc. Concurrently, the coaches worked with
the analysts and testers to teach them to think in terms of stories, to focus re-
quirements work on the current and upcoming iteration, and to collaborate with
the developers in developing a reasonable backlog of sized stories.

All of this met with understandable discomfort at first. It forced people to
eliminate the unhealthy (if familiar) habits of interaction between analysts, de-
velopers and testers. Rather than following the handoff approach, people had to
learn to work together to do “just-in-time requirements” and “just-in-time test-
ing.” Business started seeking IT’s input on stories and sizing. IT, appropriately,
learned how to better leverage verbal communication at the story level in order
to refine requirements incrementally.

Early in the effort, the large group was divided into two sub-teams. The
sub-teams shared a codebase and iteration schedule, but each had its own set
of stories to implement. The sub-team structure was set up to encourage ex-
perimentation and accelerate new learning. For instance, teams learned through
experience that they really did prefer face-to-face communication over email,
even if it meant leaving their cubicles largely vacant. Also, the low-tech means
of tracking iteration progress on a wall (with index cards) proved to be better
than any computer-based project management software.

Together with the end users, the team discovered the benefits of converting
the end-of-iteration meeting from a demo into a true user acceptance test. Now,
instead of just watching, business folks were required to use the application at
the end of each iteration. This greatly increased the quality of the feedback.

Result. As the XP-proficient team members settled into their newly-enlarged
rooms, they proved that agile development could scale to multiple teams. It could
work within the Multifamily environment and produce great results even on a
large, complex application – starting from a legacy codebase. Even conformance
to the corporate methodology guidelines could be accomplished in an agile way.

On a human level, team members themselves showed renewed enthusiasm
for the development process. They forged much more effective relationships, and
became more aware of how the contributions of each role were important in
quickly producing useful, tested software. This new familiarity allowed them to
expand their own skills, enhance their interactions, and develop a deeper level
of friendship.

3.5 Continuing Progress (April 2004 – Present)

Multifamily has continued using its customized agile software development pro-
cess, and this approach has begun to radiate out to other parts of the orga-
nization. While the introduction of specific agile practices has met with much
success, the greater triumph has been the adoption of an agile mindset with
increasing enthusiasm throughout Multifamily. Rather than merely trying to

36 Jeff Nielsen and Dave McMunn

create a new methodology, the emphasis has shifted to enhancing communica-
tion, feedback, and human interaction. The agile journey has changed the way
that both business and IT think about software development.

An important effect of this effort has been a renewed focus on continuous
process improvement. The practice of regular iteration retrospectives has con-
tinued, which encourages ongoing innovation and allows each team to optimize
its execution. The need for external coaches has disappeared accordingly.

Just how well have the teams performed on their own? The “proof is in the
pudding.” In mid-2004, one of the Multifamily IT teams tackled a new imple-
mentation of the Applicant Experience Check application. Like Deal Registration
three years before, the current technology didn’t fully meet the business need and
required numerous workarounds. In a period of three months the team of all Mul-
tifamily employees designed, delivered, and deployed a complete application that
delighted the business users. No formal requirements phase (or documentation)
was attempted or required, deployment took only one week after development
was complete, and to date, not a single defect has been reported. Clearly, this is
an IT team that embodies agile software development.

4 Conclusion

In little more than three years, Multifamily has witnessed its evolution into an
organization that has embraced a nimble, dynamic, agile software development
methodology. Theirs is a story of successful, lasting organizational change. They
are proof that a large company can, with a measured introduction, dramatically
enhance its approach to software development.

Multifamily’s experience with adopting XP provides several lessons for other
large organizations that wish to institutionalize agile software development.

– The slow, gradual approach was the key to success at Multifamily. Beginning
with a cautious experiment and then proceeding to use agile techniques
on a series of increasingly-significant efforts allowed sufficient time for new
concepts to sink in and for new ways of working to gain acceptance.

– In addition to time, large companies need proof that an agile software process
will work in their particular situation. They need this proof before they will
begin to invest heavily in change.

– Working with business and management in addition to developers is im-
perative. This “three-pronged attack” is key, as is having a management
champion within both IT and business.

– Both business and IT have their own sets of fears that need to be addressed.
Multifamily’s business leaders needed to learn that, ironically, they could be
more successful at getting the systems they needed on time and on budget by
not attempting to specify all the details of the requirements and schedule up
front. IT, for its part, needed to be convinced that an iterative, incremental
approach could produce high-quality systems and work in their environment.

It is interesting to note that Multifamily adopted XP in an incremental, evo-
lutionary fashion. Each small step produced both the learning and the confidence

The Agile Journey 37

Table 1. Overview of Multifamily’s agile journey

- End-of-iteration user acceptance testing
- Just-in-time requirements
- Analysts and testers integrated with team
- Scaling XP to multiple sub teams
- Using Wiki (FitNesse) for functional tests
- Working with legacy code

On-site at Multifamily.
Existing Multifamily project
team split into two sub-teams.
Digital Focus coaches in
advisory roles.

Nov. 2003 –
Apr. 2004

HCD
Front End

- On-site team room
- Flexible scope release planning each iteration
- Direct customer participation in iteration kickoff
- Customer involvement in end-of-iteration mtg.
- Intensive pair programming
- Daily business involvement
- DBA integrated with team and schedule
- Mapping of practices to regulatory requirements

On-site at Multifamily.
Multifamily development team,
testers, DBAs, etc., with two
Digital Focus coaches in
leadership roles.

Apr. 2003 –
Aug. 2003

Waivers

- Pair programming
- Coordinated teams
- Coding standard & collective code ownership
- Automated functional testing story-by-story
- Release planning with story tradeoffs
- Delivering code from each iteration to client
- End users viewing system after each iteration
- End-of-iteration demo, celebration, and song
- Iteration retrospectives (SAMOLO)

Off-site at Digital Focus. One
DF team plus one complete
Multifamily IT team (co-
located). Fixed-scope
contract for DF team.

Sep. 2002 –
Jan. 2003

Pricing

- Co-location in team room
- Stories on cards
- Project tracking (stories and tasks) on the wall
- 2-week iterations
- 100% unit testing coverage w/JUnit
- Test-Driven Development (TDD)
- Continuous integration
- Simple design/refactoring

Off-site at Digital Focus.
Single DF team with one
developer and one tester from
Multifamily. Fixed-scope
contract.

Oct. 2001 –
Dec. 2001

Deal
Registration

- End-of-iteration user acceptance testing
- Just-in-time requirements
- Analysts and testers integrated with team
- Scaling XP to multiple sub teams
- Using Wiki (FitNesse) for functional tests
- Working with legacy code

On-site at Multifamily.
Existing Multifamily project
team split into two sub-teams.
Digital Focus coaches in
advisory roles.

Nov. 2003 –
Apr. 2004

HCD
Front End

- On-site team room
- Flexible scope release planning each iteration
- Direct customer participation in iteration kickoff
- Customer involvement in end-of-iteration mtg.
- Intensive pair programming
- Daily business involvement
- DBA integrated with team and schedule
- Mapping of practices to regulatory requirements

On-site at Multifamily.
Multifamily development team,
testers, DBAs, etc., with two
Digital Focus coaches in
leadership roles.

Apr. 2003 –
Aug. 2003

Waivers

- Pair programming
- Coordinated teams
- Coding standard & collective code ownership
- Automated functional testing story-by-story
- Release planning with story tradeoffs
- Delivering code from each iteration to client
- End users viewing system after each iteration
- End-of-iteration demo, celebration, and song
- Iteration retrospectives (SAMOLO)

Off-site at Digital Focus. One
DF team plus one complete
Multifamily IT team (co-
located). Fixed-scope
contract for DF team.

Sep. 2002 –
Jan. 2003

Pricing

- Co-location in team room
- Stories on cards
- Project tracking (stories and tasks) on the wall
- 2-week iterations
- 100% unit testing coverage w/JUnit
- Test-Driven Development (TDD)
- Continuous integration
- Simple design/refactoring

Off-site at Digital Focus.
Single DF team with one
developer and one tester from
Multifamily. Fixed-scope
contract.

Oct. 2001 –
Dec. 2001

Deal
Registration

needed to be able to take the next one. Although it was an uphill battle, a slow,
steady climb up that hill proved to be much more effective than any attempt to
sprint to the top.

Perhaps the sentiments expressed by the senior leadership of Multifamily say
it best. At the beginning of 2004, a pair of vice presidents met with a group of
directors, project managers and developers, and indicated their desire to embrace
agile software development as “the way forward,” noting that they believed it
was the “only way to make progress in [their] environment of constantly-changing
priorities.” On the heels of that insight, the director who had been the primary
change advocate and who had witnessed the slow, steady acceptance of XP at
Multifamily, added: “If anyone ever tries to make me go back to the old way of
building software, I am quitting.”

From User Stories to Code in One Day?

Micha�l Śmia�lek

Warsaw University of Technology and Infovide S.A., Warsaw, Poland
smialek@iem.pw.edu.pl

Abstract. User stories in software engineering serve the purpose of dis-
covering requirements and are used as units of system development.
When applying stories in a project, two elements seem to be crucial:
the ability to write coherent sequences of events and the ability to trans-
form these sequences into code quickly and resourcefully. In this paper,
these qualities are reflected in a notation that can be described as “sto-
ries with notions”. This notation separates the story’s sequence of events
from the description of terms used in this sequence. Such a formal sep-
aration does not limit and rather enhances invention, at the same time
rising the level of consistence, and facilitating translation into models of
code. This translation maps domain notions into static code constructs
(classes, interfaces) and also maps stories into dynamic sequences of mes-
sages. With such a mapping, programming becomes equivalent to skilled
transformation of user stories, thus giving shorter development cycles.

1 Introduction

In Poland there is well known a novel written by Eliza Orzeszkowa, called “On
the Niemen River”. It is full of beautiful descriptions of the Polish-Lithuanian
countryside around the Niemen river in the XIXth century. Of course, as for
every normal novel, it also tells some story. The story is very suggestive and
coherent, as all the characters move around this well-described piece of coun-
tryside, with rivers, lakes, roads, villages and mansions. The majority of Polish
students remember this novel because of these rich descriptions of the nature.

At this moment one might ask what is the relation of Orzeszkowa’s novel
to software development. We shall try to argue that the relation is significant,
especially in the area of requirements specification. Can we imagine a novel
which has just the story and no description of the environment (people, places,
landscape, and so on)? And when we quickly move to software engineering;
can we imagine requirements specification that has just the story? An obvious
answer is – no! Of course, when specifying the requirements for a software system
we need to tell the developers a story which can be defined as an “account of
incidents or events”1 happening between a user (a role) and the system. However,
this story has to be supported by descriptions of all the notions used therein.

Unfortunately, a majority of story writers in software engineering tend to
mix stories with the descriptions of notions handled by their systems. These
1 Merriam-Webster On-line Dictionary

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 38–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

From User Stories to Code in One Day? 39

notion definitions are buried somewhere inside the stories. What is worse – the
same notions are often described inconsistently in different stories (see [1]). This
inconsistency is more or less acceptable when we write a novel, while it is totally
disastrous when specifying a software system.

The requirements specification in software engineering has a clear purpose:
to produce code that satisfies the real needs of the client. Supposing that we can
discover these needs through stories with separated notions, we are still left with
an important question: how to make code out of them? It seems obvious that
we somehow need to transform stories into sequences of instructions in code,
but what about the “descriptions of the nature”? Can we define some process
of transforming stories and notions into code? Can this process be automated?

In this paper we will try to answer the above questions. The paper proposes
a notation for user stories [2] and notions that allows for easy translation into
design level models and code. It also defines appropriate transformations. It is
also argued that keeping the transformation mappings allows for more agility in
treating the constantly changing user requirements.

2 Communicating the Users with the Developers

One of the fundamental practices of agile software development is close and
constant cooperation of developers with the users. We can call such relations
as “a cooperative game of invention and communication” [3]. However, we still
have to bear in mind that clients and developers have their own backgrounds
and their own points of view. A good way of communicating the users with the
developers is to tell stories. Though, while most people like to listen to stories,
only few are able in telling them well. Let’s now ask a question in the context of
software development: what would users and developers require from the stories?
Gathering answers to this question would allow us to design suitable notation for
the stories and determine the way they can be used in the development lifecycle.

Basically, the user wants to hear from the developer a story about “how the
system shall work”. The story should be communicated in a common language
using simple sentences. The story should be a “real story” – with a starting event
and with a “happy” or “sad” ending. These sentences should use well defined
notions from the user’s domain vocabulary. The notion definitions should be
easily accessible when needed (not buried somewhere in other stories). The story
should not use any special keywords or formal constructs. We should be able to
group several stories that lead to a single goal from the user’s point of view [4].
The users are usually not good in writing stories. They need someone that would
listen to their stories and then write them down in some possibly standard way.
Then, they can read the stories, judge them and suggest corrections.

The developers need stories to determine single units of the system’s be-
havior to be developed. For them, it would be ideal if the stories were written
as temporal sequences of interactions between roles and the developed system.
Notions used in the stories should be easily transformable into design and code
constructs (classes, interfaces, etc.) Stories should be formed of sentences that

40 Micha�l Śmia�lek

allow for easy translation into sequences of code instructions. Moreover, when a
story changes, it should be easy to trace the change into code. Developers that
design systems and write code are often reluctant to write stories. However, they
can easily verify quality of the stories from the design point of view. They are
good at spotting inconsistencies, ambiguities and generally “holes” in the stories.

To write good stories we thus need good “story writers”. We need to find
them in our user or development team (and it seems not to be that easy). We
also need to give them a “toolbox” which is necessary in order to establish a
proper communication path. This toolbox should contain a notation for stories
and tools to write them down. Developers would also be happy with a tool that
could support translation of the stories into code.

3 Notation and Tools for Coherent User Stories

How to write a good story that would suit both the users and developers? Good
stories, as they were written for centuries (see Orzeszkowa’s novel), constitute a
balance between describing the sequence of events and describing the environ-
ment. Good stories are also written in a coherent style.

When writing stories for a software system, we define a dialog between a
user and the developed system (see [5] for an insight on such essential dialog).
A story is a sequence of interactions between them. A good style here would be
to describe these interactions with the simplest possible sentences, like:

– Student enters the semester.
– Teacher accepts the current marks.
– System assigns the student to the new semester.

These simplest sentences contain just the bare minimum for a full sentence: a
subject, a verb, and one or two objects. What else do we need to tell a story?
Well, of course we need some explanation of what do all the terms used in these
sentences mean. Sometimes this may be quite obvious, but in many cases it is
crucial to define them. For instance: the semester. One might think that it is
simply a number between 1 and 10 denoting the level of studies in a five-year MSc
program (like: I’m on the 5th semester). But maybe we are wrong, maybe it is
the current academic half-year (like: the current semester is winter 2004/2005)?

Subject-verb-object (SVO) sentences are good at telling the sequence of
events, but they are not appropriate for describing the environment of our story.
So, what should we do? Should we allow for “SVO’s with descriptions”? Expe-
rience shows that this is not a good idea. Writers are then tempted to write
something like:

– Student enters the semester where the semester is a number between 1 and
10 denoting the level od studies.
and somewhere else:

– Dean accepts the semester for the new student, where the semester is a
number denoting the current student’s status.

These two sentences are usually written in separate stories by separate writers
or there is some period of time between writing them. The problem is – which

From User Stories to Code in One Day? 41

of these slightly different definitions is correct? Another problem is – how to
find out that we in fact have two different definitions of the same notion? The
solution is quite obvious: write only SVO sentences to describe the sequence of
events and keep the notion descriptions in a separate vocabulary. This leads to
significant improvement in coherence:

– Student enters the semester.
– Dean accepts the semester for the new student.

where:
– Semester – number between 1 and 10 denoting the level of studies and the

current student’s status.

Having a notation for sentences we are now ready to tell full stories. These
stories should form complete sequences of events. They should start with an
initial interaction from a user and end with a final goal that gives the user a
significant value. Requirements that contain such stories are perfectly suited for
incremental development. They carry value for the users, and at the same time,
they can be treated by the developers as atomic pieces of development. In every
iteration we can now create increments based on stories like (see also Fig. 1, 2):

1. Student wants to select lectures.
2. System shows a list of possible lectures.
3. Student selects a lecture from the list of possible lectures.
4. System assigns the lecture to the student.

While writing the stories we constantly extend our vocabulary of notions. We
describe all the sentence objects that might cause ambiguity when developing
the stories. We also define relations between the notions. This gives us a static
map of the “user’s territory”. We can write individual notions on index cards
or we can draw simple class diagrams like the one shown on Figure 1 (see also
[6]), consistent with Agile Modeling practices (like: Create Simple Content; [7]).
These diagrams additionally extend and clarify our definition of semester:

– Semester – contains a number between 1 and 10 denoting the level of studies
and the current student’s status; has an associated course and a list of
possible lectures.
where:

– Course – contains several semesters; courses are taken by the students.
– List of possible lectures – a list of lectures associated with a given semester.

LectureTeacher

Course

Student

List of Possible
Lectures

Semester

1: pick lectures
4: assign lecture

3b: select 2: show
3a: allow selection

1. Student wants to select
lectures.
2. System shows a list of
possible lectures.
3. Student selects a lecture from
the list of possible lectures.
4. System assigns the lecture to
the student.

1. Student wants to select
lectures.
2. System shows a list of
possible lectures.
3. Student selects a lecture from
the list of possible lectures.
4. System assigns the lecture to
the student.

Fig. 1. Navigation through the domain for the “select lecture” story

42 Micha�l Śmia�lek

User stories written with the above notation have two significant characteristics:
they can be easily kept coherent and they can be easily transformed into design
and code. Coherence of such stories lies in the fact that all of them are based
on the same domain description. Notion definitions form a map of the territory
that “glues together” functionality which sometimes seems totally independent.
Stories only navigate through this static map giving it the necessary element of
functionality, as illustrated on Figures 1 and 2. It verifies that all the notions
used in our two stories are properly used. Note, that we have actually discovered
that there are some inconsistencies in the stories. The story writer forgot that
the system needs to determine the semester, before the student selects a lecture
and that the dean should select the semester when adding a new lecture.

TeacherLecture

Student List of Possible
Lectures

Semester

Course

1: add new lecture

3: ask for data
4: allow entering data

6: add lecture

Dean

Student

Dean wants to add a new lecture to a course.
System asks for semester.
System asks for data of the lecture.
Dean enters the data of the lecture.
Dean enters the semester.
System adds the lecture to the list of
possible lectures

Dean wants to add a new lecture to a course.
System asks for semester.
System asks for data of the lecture.
Dean enters the data of the lecture.
Dean enters the semester.
System adds the lecture to the list of
possible lectures

Dean wants to add a new lecture to a course.
System asks for semester.
System asks for data of the lecture.
Dean enters the data of the lecture.
Dean enters the semester.
System adds the lecture to the list of
possible lectures

Dean wants to add a new lecture to a course.
System asks for semester.
System asks for data of the lecture.
Dean enters the data of the lecture.
Dean enters the semester.
System adds the lecture to the list of
possible lectures

1. Dean wants to add new lecture to course.
2. System asks for semester.
3. System asks for data of the lecture.
4. Dean enters the data of the lecture.
5. Dean enters the semester.
6. System adds the lecture to the list of
possible lectures.

1. Dean wants to add new lecture to course.
2. System asks for semester.
3. System asks for data of the lecture.
4. Dean enters the data of the lecture.
5. Dean enters the semester.
6. System adds the lecture to the list of
possible lectures.

Role notions Domain notions

Stories

2: ask
5: allow entering

Fig. 2. Model of requirements based on “stories with notions”

Finding such inconsistencies is a difficult task having a typically sized system.
We have hundreds of stories and tenths of notions to verify. It seems obvious that
we need a tool to support our efforts. We can use the simplest possible “tool”
– index cards with notions arranged on a wall. They can be manipulated easily
and can be used to “play stories” as illustrated above. A step further would be to
have this repository of notions and stories managed with an automated tool. This
tool would allow us to organize sentences into stories, and hyperlink subjects,
verbs and objects to appropriate elements of the vocabulary (see [8] and [9] for an
example and a more detailed idea of such a tool). The stories and the vocabulary
organized through hyperlinks, form in fact a model of requirements (Figure 2).
We can call this model – “stories with notions”. In the model, sentence subjects
are linked to notions denoting roles for the system. Sentence objects have links
with individual notions of the problem domain, and verbs denote operations on
these notions. A model organized in a tool as described above has an important
characteristic – it is ready to be transformed into a code model.

4 Getting from SVO User Stories to Code

Users write stories to tell developers what they need. Developers write stories
to clarify that they have understood users correctly. Users and developers write

From User Stories to Code in One Day? 43

stories together to make sure that the final system will be correct (i.e. will satisfy
the real needs of the user). This means, that we can in fact have various kinds
of stories.

– initial user stories – simple statements from the users that reflect their wishes
(“user wishes”),

– clarified user stories – more elaborated stories that contain more details
about the functionality of the developed system,

– test stories – detailed stories with added test data, written for the purpose
of acceptance testing.

All of these kinds of stories can be written using the SVO format. The initial
stories can be written as just one to four SVO sentences. The clarified stories
usually add to the initial stories more sentences (more details of the functionality)
and add notions (details of the problem domain). These clarified stories can be
“adorned” with test data to form test stories.

While the initial stories can jump-start elicitation of user needs, the more
detailed stories are the starting point for all the development efforts. This leads us
to defining a simple development cycle that uses SVO stories. A single iteration
in such a lifecycle might look (in a simplified form) as follows (Fig. 3).

– The users write initial stories.
– The users meet with developers during a story writing session. Together they

write clarified stories with notions.
– The developers translate the clarified stories into code. Coding is supported

by class model derived from notions and sequence model derived from sto-
ries. During development, the stories are clarified with the users whenever
necessary. Test stories are also written.

– Developers make sure that test stories are fulfilled and hand the system to
the users.

– Users verify the system and possibly write corrected initial stories. They also
write new initial stories. The lifecycle loop closes.

The simplest and possibly most efficient way to capture SVO stories and no-
tions during story writing sessions are index cards. However, having a large set
of stories and associated notions it seems worthwile to use an automated tool
to support story clarification during development. Such a tool (mentioned in
the previous section) can help organizing stories and keeping the overall model
coherent.

clarified
stories

initial
stories

notions class
model

sequence
model

code

Fig. 3. Software lifecycle involving SVO stories and notions

44 Micha�l Śmia�lek

CCourseManager

add_lecture_to_course() : void

class CCourseManager {
void add_lecture_to_course()
{

dat=app.get_lecture_data();
if (dat!=null) {

lec.create(dat);
selected.add_lecture(lec);

}
}

}

class CCourseManager {
void add_lecture_to_course()
{

dat=app.get_lecture_data();
if (dat!=null) {

lec.create(dat);
selected.add_lecture(lec);

}
}

}

Design

Code

Design

Fig. 4. Visual design models adding important abstraction level to code

As it can be noted on Figure 3, the overall development effort has been split
into two groups of human activities. The first group involves translating the
actual stories (treated as sequences of events) into sequences of instructions in
code. The second group translates the domain notions into static code elements
(classes). It is important to note that this translation can be done with the sole
use of a typical programming environment only for the most trivial systems.
Average systems are complex enough to necessitate some way of taming this
complexity. In our approach, this taming is done through UML [10] class and se-
quence diagrams. These diagrams show the structure of code and its dynamics in
a visual form (see Fig. 4). In most cases, diagrams hand-drawn on a white-board
suffice. It can be also very beneficial to use an automated CASE tool (chosen
from several on the market), integrated into our programming environment. This
integration is essential, as only then it relieves us from the burden of actually
synchronizing the pictures with code, and gives significant advantage over hand
drawn pictures.

It has to be stressed that the use of UML CASE tools has to be done with
great care. UML 2 has thirteen different types of diagrams. Extensive use of
these diagrams might cause a severe “UML fever” (see [11] for an excellent sur-
vey of possible fevers). It seems from the current experience (several “clinical
tests” were made) that applying the above lifecycle with class and sequence di-
agrams does not cause the UML fever. This is supposedly due to the fact that
the diagrams in the lifecycle are drawn for a very specific purpose, which is to
support structuring code in a clear manner. With CASE tool support, visual
(graphical) documentation is created automatically while coding, similarly to
using eg. JavaDoc. This makes creating additional heavy documentation com-
pletely unnecessary. At the same time it supplies the developers instantly with
an additional level of abstraction that enhances comprehension of code.

The design model based on class and sequence diagrams has one more ad-
vantage. It can be linked directly with the requirements model based on SVO
stories with notions. Keeping these links is important when handling changes
in user needs. When SVO stories or notions change (and change the associated
acceptance tests) we have direct visual pointers to places in code that need to be
updated. These links can be kept simply by assigning appropriate index cards to
appropriate hand drawn diagrams. SVO story cards are linked to sequence dia-
grams, and notion cards are linked to class diagrams (see. Fig. 5). With CASE

From User Stories to Code in One Day? 45

LectureTeacher

Course

Student

List of Possible
Lectures

Semester

Dean wants to add a new lecture
to a course.
System asks for semester.
System asks for data of the
lecture.
Dean enters the data of the
lecture.
Dean enters the semester.
System adds the lecture to the
list of possible lectures.

Dean wants to add a new lecture
to a course.
System asks for semester.
System asks for data of the
lecture.
Dean enters the data of the
lecture.
Dean enters the semester.
System adds the lecture to the
list of possible lectures.

class CCourseManager {
void add_lecture_to_course()
{
dat=app.get_lecture_data();
if (dat!=null) {
lec.create(dat);
selected.add_lecture(lec);

}
}

}

class CCourseManager {
void add_lecture_to_course()
{
dat=app.get_lecture_data();
if (dat!=null) {
lec.create(dat);
selected.add_lecture(lec);

}
}

}

Requirements DesignCode

change change
change

Fig. 5. Links between requirements and design pointing unambiguously to code

tool support, these links can be managed automatically thus supporting the
human efforts. Keeping links between SVO stories and design diagrams can be
treated as a version of Agile MDA [12]. It is a skilled (human-led) transforma-
tion between an inclusive model (user stories + notions) and the design model
(class and sequence diagrams). The current approach can also be compared to
Property-Driven Development [13], however, here the sequence diagrams are de-
veloped as part of the design model, not the requirements model (SVO stories
are used instead).

It can be noted that the presented lifecycle uses practices already present in
XP [14] and FDD [15]. SVO stories can be best compared to XP’s user stories,
with added SVO notation. The concept of structuring the initial user needs
can be found in FDD, where features (and feature sets) have a very precise
notation. The story writing session is closely related to the XP’s planning game.
Translating stories into design and then to code can be found as two major
activities of FDD (design by feature, build by feature). Here, they are applied
not to features as in FDD, but to SVO stories. Comparison with FDD can
also show that actually the notion model is a simplified version of the “overall
object model” (without attributes and operations). The two UML models used
to design and document code are directly taken from FDD. UML models can
also be applied with success in XP (see eg. [16]).

“Clinical tests” in a student lab project were made to verify that the method
cures the UML fever. The students trained in UML were formed in groups of
around 12 (around 7 groups in a year). These groups were assigned to develop a
system during a one-semester lab. For three consecutive years, the lifecycle used
during the lab changed from iterative, use case [4] driven with extensive UML
models, through story-based with FDD [15] lifecycle, to SVO story-based. The
SVO-based lifecycle seemed to be best suited for the less experienced developers
like students. It resulted with higher interaction between the students and the
“users” (i.e. the tutors) and much clearer code (see [16]). The final systems were
more functional and more compatible with the real needs of the client.

46 Micha�l Śmia�lek

5 Conclusions

Author’s experience shows that catching the UML fever in software development
is quite common. Most of the consulted development organizations were initially
very eager to use automatic CASE tools that support UML notation and gen-
erate code automatically (well, almost automatically...). These tools looked like
“silver bullets” for all their problems. They promised shorter (maybe one day
long?) development cycles. Unfortunately, applying CASE tools in a documenta-
tion heavy environment resulted in a “look how much documentation we can now
produce” syndrome. The organizations that wanted to change their development
practices got bogged down in creating detailed analytical models supported by
heavy architectural studies. This resulted in rejecting the tools as adding more
work and returning to previous practices.

The approach presented in this paper seems to offer a cure for organizations
caught by the UML fever. It offers a lightweight process, where UML diagrams
are treated with great care. Tools are used only to support the actual devel-
opment of working code by giving instant design level models. These models
are very distinct from heavy documentation and give the advantage of having a
higher level of abstraction (like XP’s metaphors, and simple design diagrams).
Moreover, these design models can be directly linked to the requirements mod-
els. Clear separation of structure from dynamics results in better communication
among developers and between developers and users. This separation is done al-
ready on the requirements level and thus allows for clear distinction of activities
that lead to implementing the domain structure (notions) from those that im-
plement the system’s dynamics (SVO stories). This distinction also supports
invention and discovery. Many valuable notions can be discovered when SVO
stories are used. It can be argued that supporting human activities with a clear
path from constantly changing user needs to code, and with some simple trans-
formation tools, could lead in the future to real reduction in development times
(one day cycles?). However, this is still to come...

References

1. Breitman, K., Leite, J.: Managing user stories. In: International Workshop on
Time-Constrained Requirements Engineering 2002 (TCRE’02),
http://www.enel.ucalgary.ca/tcre02/ (2002)

2. Cohn, M.: User Stories Applied. Addison-Wesley (2004)
3. Cockburn, A.: Agile Software Development. Addison-Wesley (2002)
4. Cockburn, A.: Structuring use cases with goals. Journal of Object-Oriented Pro-

gramming 5 (1997) 56–62
5. Constantine, L.L.: What do users want? Engineering usability into software. Win-

dows Tech Journal (1995) revised in 2000,
http://www.foruse.com/articles/whatusers.htm.

6. Ambler, S.W.: Agile data modeling.
http://www.agiledata.org/essays/agileDataModeling.html (2005)

7. Ambler, S.W.: Agile Modeling (AM) practices v2.
http://www.agilemodeling.com/practices.htm (2005)

From User Stories to Code in One Day? 47

8. Gryczon, P., Stańczuk, P.: Obiektowy system konstrukcji scenariuszy przypadków
uzycia (Object-oriented use case scenario construction system). Master’s thesis,
Warsaw University of Technology (2002)

9. Śmia�lek, M.: Profile suite for model transformations on the computation indepen-
dent level. Lecture Notes on Computer Science 3297 (2005) 269–272

10. Fowler, M., Scott, K.: UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley Longman (2000)

11. Bell, A.E.: Death by UML fever. Queue 2 (2004) 72–80
12. Ambler, S.W.: A roadmap for Agile MDA.

http://www.agilemodeling.com/ essays/agileMDA.htm (2005)
13. Baumeister, H., Knapp, A., Wirsing, M.: Property-driven development. In Cuellar,

J.R., Liu, Z., eds.: Proc. 2nd IEEE Int. Conf. Software Engineering and Formal
Methods (SEFM’04), IEEE Computer Society Press (2004)

14. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(2000)

15. Palmer, S.R., Felsing, J.M.: A Practical Guide to Feature-Driven Development.
Prentice Hall PTR (2002)

16. Astels, D.: Refactoring with UML. In: XP 2002, The Third International Confer-
ence on eXtreme Programming. (2002) http://www.xp2003.org/xp2002/.

Evaluate XP Effectiveness
Using Simulation Modeling�

Alessandra Cau, Giulio Concas, Marco Melis, and Ivana Turnu

DIEE, Universitá di Cagliari
{alessandra.cau,concas,marco.melis,ivana.turnu}@diee.unica.it

http://agile.diee.unica.it

Abstract. Effectively evaluating the capability of a software develop-
ment methodology has always been very difficult, owing to the number
and variability of factors to control. Evaluating XP is by no way differ-
ent under this respect. In this paper we present a simulation approach
to evaluate the applicability and effectiveness of XP process, and the
effects of some of its individual practices. Such approaches using simu-
lation are increasing popular because they are inexpensive and flexible.
Of course, they need to be calibrated with real data and complemented
with empirical research.

The XP process has been modelled and a simulation executive has been
written, enabling to simulate XP software development activities. The
model follows an object-oriented approach, and has been implemented
in Smalltalk language, following XP process itself. It is able to vary the
usage level of some XP practices and to simulate how all the project
entities evolve consequently.

1 Introduction

The objective evaluation of a particular technology or methodology of software
development has been studied for many years by empirical research. The main
issue is that it is practically impossible to assert that a particular development
methodology is better than another. In fact, the effectiveness of a particular
development technique is influenced by many factors in continuous change.

This is even more obvious in the case of software development in which there
is a strong influence of the human factor. For example, the experience of a
particular development team can influence the result of a project. Experience is
one of those factors that evolves continuously in time and makes impossible the
objective evaluation of two development techniques. We would have to carry the
same project in parallel under the same conditions, using the same persons and
varying only the methodology.
It is practically impossible!

� This work was supported by MAPS (Agile Methodologies for Software Produc-
tion) research project, contract/grant sponsor: FIRB research fund of MIUR, con-
tract/grant number: RBNE01JRK8.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 48–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Evaluate XP Effectiveness Using Simulation Modeling 49

Some answers to this problem come from empirical research. However, it is
not efficient or even possible to conduct empirical studies for a large number of
context parameter variations. Also, empirical studies are extremely costly and
cannot be performed with such a large degree of completeness.

One of the possible partial solutions found from researchers is to use simula-
tion to estimate and verify the effectiveness of a particular development process.
It is a partial solution because the results are always influenced by the process
model itself, which is always a strong simplification of the real world. However,
a well calibrated and validated simulator can provide a lot of information on the
efficacy of a given methodology.

In recent years, a new lightweight methodology of software development has
become very popular: Extreme Programming (XP) [1]. Academics and practi-
tioners of the software engineering field need to assess the XP practices’ effi-
cacy with quantitative results. Works that report quantitative results are still
very scarce and are based on empirical studies. Particularly significant is an
experimental research conducted by Williams et al. [2] in which they conclude
empirically that one of the most important XP practices – Pair Programming
– increases the development cost by 15%, but it is repaid in shorter and less
expensive testing, quality assurance and field support.

In this research, we have developed a simulation model in order to evaluate
the applicability and efficiency of XP process, and the effects of some of its
individual practices on project results.

The remainder of the paper is organized as follows: in section 2 is presented
the state of the art of the simulation modeling of agile software processes, XP
ones in particular. Section 3 describes the details of the model proposed. Section 4
illustrates how verification and validation of the simulator have been approached
while the section 5 shows some results of our research.

2 Related Work

In recent years, agile methodologies for software development have become in-
creasingly popular. Such methodologies must be tested in order to validate their
effectiveness. The simulation represents a powerful tool in order to test new
methodologies, avoiding or postponing experimentations in the real world [3].
In spite of the great diffusion of Extreme Programming (XP) in academic and
industrial field, only recently the first attempts of XP processes simulation have
appeared, all using the System Dynamics approach. Here we cite some significant
contributions.

In [4] Cao proposed a system dynamic simulation model to investigate the
applicability and effectiveness of agile methods and to examine the impact of
agile practices on project performance in terms of quality, schedule, cost and
customer satisfaction.

Misic et al. [5] investigated the possibility of using system dynamics to model,
and subsequently simulate and analyze, the software development process of the
XP software development process. In particular, they considered the effects of

50 Alessandra Cau et al.

four practices of this methodology: pair programming, refactoring, test-driven
development, and small developmental iterations.

In [6] Kuppuswami et al. proposed a system dynamics simulation model of the
XP development process to show the constant nature of the cost of change curve
that is one of the most important claimed benefits of XP. They also described
the steps to be followed to construct a cost of change curve using the simulation
model.

Perhaps one of the most relevant works was made by Kuppuswami et al.
[7]. They developed a system dynamics simulation model to analyze the effects
of the XP practices on software development effort. The model developed was
simulated for a typical XP project of the size of 50 User Stories and the effects
of the individual practices were computed. The results indicated a reduction
in software development cost by enhancing the usage levels of individual XP
practices.

3 The Proposed Model

The most important goal of our work is to quantitatively evaluate the XP
methodology effectiveness varying the usage level of its practices. Based on the
considerations carried out in section 1, we have chosen the simulation modelling
approach.

The model we are developing already implements a number of XP practices –
Pair Programming, Test Driven Development, Small Releases, Planning Game,
Code Ownership – and is able to vary the usage level of some of them, such as
TDD and Pair Programming, and the size of Releases and Iterations. In this way,
the user could vary the usage level of an XP practice to evaluate its effectiveness
and the impact on the process in terms of quality, costs, time, etc, and see how
the modelled entities evolve consequently.

3.1 Model Description

The model is characterized by several activities (Release Planning, Development
Session, etc). The inputs to these activities are entities (User Stories, Integrated
code, etc) that are modified and created by other instances of activities. The
class diagram in figure 1 shows the relationships among the high-level entities of
the XP process model. The activities are eventually composed of sub-activities
such as the user story estimation activity. Each activity is executed by one or
more actors of the process. The identified actors are the Team, made up of De-
velopers, the Customer and the Manager. Each actor has some attributes,
which vary in time, and can perform a number of actions. These actions can
be performed in cooperation with other actors (two developers working in pair-
programming) in order to carry out a particular activity (see section 3.2).

The time granularity of our model is that of a development session, which is
typically of a couple of hours. The equations that regulate the variations on the
model entities and the execution of each activity have been taken from existing

Evaluate XP Effectiveness Using Simulation Modeling 51

Fig. 1. Class diagram of some of the high-level model entities

models, empirical data and, where necessary, from authors assumptions. About
the statistical distributions used in the model we have mostly chosen gaussian
and log-normal functions.

3.2 Model Dynamics

The project starts with an initial number of User Storys (USs), which identify
the main requirements of the project and represent a preliminary evaluation of
the project’s size. These USs are prioritized by the Customer and subsequently
estimated by the Team using values taken from statistical distributions.

This estimate is affected by a stochastic error which is decreased by the overall
experience of the Team on the project. When an US estimation exceeds a certain
limit (a portion of the Iteration capacity) it will be splitted into two or more
USs. The next phase consists of choosing the USs which will be implemented for
the next Release and consequently assigned to a specific Iteration.

During an Iteration, design and development of the scheduled USs is per-
formed. This activity produces the source code required to implement the func-
tionality described by each US. The produced code is characterized by size (in
terms of number of classes, methods and locs) and quality (number of defects).

The time actually spent to implement each US is affected by the estimation
error and by the velocity of the developers who have worked on it1. In addition,
it is influenced also by adoption levels of Pair Programming and Test Driven
Development (TDD) practices.

In some cases not all the planned USs are completed within an Iteration.
These USs are planned again and implemented in next Iterations. Moreover,
the Customer can write new USs and possibly report problems that he has
found after each release of the system.

After the end of each Release the Customer can report a number of prob-
lems he/she has found on the project released up to that moment. This number
1 Developers are statistically different from each other in terms of initial skill and

initial velocity. These attributes increases in accordance to the experience gained on
the project

52 Alessandra Cau et al.

is related to the defect density of the system. These reports are planned by the
Team as the other USs (ProblemReportStory (PR-US)) each of which has
an associated US affected by the problem founded by the Customer. The im-
plementation of each PR-US has the effect of reducing the number of defects of
the related US.

For the sake of brevity, we only report an informal description of the De-
velopment Session activity.

Development Session. During a development session, characterized by a cer-
tain duration taken from a statistical distribution, a Developer develops the
code relating to a particular User Story. In an XP project the development
session would be normally performed by two developers working together at a
single computer (Pair Programming). However, this practice is rarely adopted
completely. For this reason, our model has an input parameter called Pair Pro-
gramming Adoption that indicates the percentage of usage of this practice. This
parameter gives the probability at which a Development Session will be per-
formed by two developers instead of one.

A Development Session performed in pair programming is more efficiently
than a “solo-programming” in terms of the time needed to implement a single
User Story, defects injected (due to the continuous review made by the pair
developer [2]), learning efficiency (the developer skill increases faster if one works
together with another developer [8], [9]).

In particular we have made the assumption that the velocity of a pair of
Developers is given by the average values of each developer velocity increased
by 40%, as found experimentally in some empirical researches [2]). Moreover, in
these studies it has been found that the defects injected during a pair-session
is less than that of a “solo-programming”. So, we model this behavior imposing
that the maximum number of bugs injected during a Development Session
activity is dictated by the best developer of the pair in terms of skill.

In an XP project Developers should write the code with the relating unit
tests. Also in this case the model has a parameter called Tdd Adoption that
accounts for the level of adoption of this practice. This parameter decreases the
velocity of the development session and the number of the defects injected [10].

At the end of a Development Session activity, new code is produced and
existing code is modified, introducing inevitably a certain number of defects.
The level of these changes are affected by stochastic variables influenced by both
Developers’ attributes (experience and skill) and the usage levels of individual
XP practices (Testing and Pair Programming).

4 Verification and Validation of the Model

One of the major problems in process simulation is the effective calibration
and validation of the developed simulator. In order to reach this goal, data
sets gathered in real projects are needed. However, these data are difficult to
obtain for several reasons. The greater part of real projects are developed inside

Evaluate XP Effectiveness Using Simulation Modeling 53

privately-owned companies that, for obvious reasons, are generally reluctant to
publish data regarding their inner development process.

We can cite two XP projects where tracking activity has been conducted
systematically and whose data are available at a sufficient level of detail: Repo
Margining System [11] and Market Info [12].

In order to calibrate the parameters of the simulation model, we have used
some input variables coming from the Repo Margining System project [11], such
as the number of developers, the release duration and so on. Also, we have
used the project and process data gathered during the first iteration. We then
simulated the evolution of the project starting from the second iteration.

With these input parameters a number of simulation runs have been per-
formed. Then, we have iteratively calibrated the model parameters in order to
better fit the final results of the real project. In table 1 the simulation outputs
are compared with the ones taken from the Repo Margining System case study.

Table 1. Comparison between simulation results averaged on 200 runs and the Repo
Margining System case study. Standard deviations are reported in parenthesiss. A story
point corresponds to 30 minutes of work

Output variable Simulation Real Project

Total days of Development 60,2 (19,6) 60
Number of completed User Stories 28,6 (6,1) 29
Estimated Effort [Story points] 470,6 (145,6) 474
Actual Effort [Story points] 803,1 (254,0) 793
Number of Releases 2,4 (0,7) 2
Number of Iterations per Release 2,6 (0,3) 3
Developed Classes 243,8 (90,7) 251
Developed Methods 1066,3 (396,8) 1056
DSI 15234,2 (5669,3) 15543

A conceptual model validation has been done interviewing some individuals
familiar with the XP process itself. The proposed approach was presented, and
its various concepts – roles, activities and artifacts – were explained in detail.
The collected feedback on our approach was positive.

Also, we performed an event validation process comparing the sequence of
the events produced by the simulation with those of a real XP process.

As regards the verification of the correctness of the simulator, we imple-
mented the system using pair-programming. Following this practice, a continuous
review was made by the pair-developer diminishing, in this way, the probability
of introducing errors during the implementation of the simulator. In addition,
we covered all the functionalities implemented with unit and acceptance tests,
enabling an automatic and continuous verification of the correctness of the sys-
tem.

54 Alessandra Cau et al.

5 Results

Let’s assume for the moment that TDD helps teams productively build
loosely coupled, highly cohesive systems with low defect rate and low cost
maintenance profiles.[. . .] How could such a thing happen? Part of the
effect certainly comes from reducing defects. The sooner you find and fix
a defect, the cheaper it is. [. . .] Do I have scientific proof? No. No stud-
ies have categorically demonstrated the difference between TDD and any
of the many alternatives in quality, productivity, or fun. [. . .] Another
advantage of TDD that may explain its effect is the way it shortens the
feedback loop on design decisions. [Kent Beck [13]]

Starting from what Beck said, we have performed a number of simulations of
our model, which has been calibrated on Repo Margining System (section 4),
varying the usage level of the TDD practice. That project was performed using
TDD at 100%. Our goal was to understand whether and how diminishing the
adoption of this practice would have changed the outputs of the Repo Margining
project, taken as a prototype of a small highly dynamic development project.

We will focus on output variables related to the effort spent on development
and the final quality of the released project, in terms of total working days and
defect density, with the same number of released functionalities (User Stories).
We make the following working hypotheses:

Hypothesis A: The residual defect density of the project using the TDD prac-
tice is different from that obtained without TDD.

Hypothesis B: The total working days needed to complete the project using
TDD is different from those without TDD.

Hypothesis C: The number of the released User Stories using TDD is equal
from that without TDD.

Looking at the results reported in table 2 (2nd and 3rd columns) we can ob-
serve that there is a certain difference between the results obtained not-using or
using TDD. In particular, using TDD at 100%, the completion date increases of
21%, the residual defect density decreases of 20%, while the number of released
USs is quite the same. These figures are quite in agreement with those reported
in [14] obtained from structured experiments conducted with professional pro-
grammers.

Table 2. Comparison between simulation results averaged on 200 runs obtained vary-
ing the usage level of Test Driven Development (TDD). Standard deviations are re-
ported in parenthesis

Output variable TDD = 0% TDD = 0% TDD = 100%
(PP = 0%) (PP = 100%) (PP = 100%)

Total working days 45,4 (22,0) 49,7 (17,6) 60,1 (23,5)
Defecs/KDSI 29,1 (6,5) 25,2 (6,7) 20,1 (4,3)
Released Stories 28,5 (6,6) 27,9 (6,6) 28,5 (7,0)

Evaluate XP Effectiveness Using Simulation Modeling 55

Fig. 2. Results obtained varying the TDD usage level. Average values, over 200 simula-
tion runs, of Completion Time [days], User Stories and Defect Density [defects/KDSI]

Also, we have performed a two-sided t-test and we have found that there is
statistical significance difference (α = 0, 05) between the two samples in terms
of Total Days and Defect Density, while there is no difference for the number of
released USs. Therefore, we can assert that the three starting hypotheses (A,B
and C) have been confirmed by our experiment.

In figure 2 we have plotted the average of these output results gradually
changing the usage level of TDD from 0 to 1. It can be easily seen how the total
effort required increases with the TDD level while the defect density decreases.

Moreover, we have performed another experiment varying the usage level of
Pair Programming. Looking at the first and third columns of table 2, it can
be seen again a difference between the average values of working days, which
increases of 32% using both practices at a maximum level. Again, the defect
density decreases of 31%, with the same number of USs. These results have
shown a statistical significance (α = 0, 05) after having performed a two-sided
t-test.

6 Conclusions and Future Work

We have developed a simulation model of XP process in order to evaluate the
effectiveness of this methodology. The input parameters are calibrated using a
real XP project.

We have observed how the outputs of the simulated project vary with the
usage level of TDD and Pair Programming. We have found that increasing the
usage of such practices the defect density of the project significantly decreases.

56 Alessandra Cau et al.

On the other hand, the results have shown an increase on the number of days
needed to implement the same functionalities.

Let us note that our model is not a complete representation of the intrinsic
complexity of these practices and of the development process itself. We have
based our model on what has been empirically found up to now, but many other
issues have to be better investigated.

We are planning to improve the current simulator modeling other practices
and activities of the software development process, with emphasis on XP. An-
other important stage of our research will be the validation of the model using
other real projects and experiments.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(1999)

2. Cockburn, A., Williams, L.: The costs and benefits of pair programming. In: Pro-
ceedings of the First International Conference on Extreme Programming and Flex-
ible Processes in Software Engineering (XP2000), Cagliari, Sardinia, Italy (2000)

3. Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software process simulation modeling:
Why? What? How? The Journal of Systems and Software 46 (1999) 91–105

4. Cao, L.: A modeling dynamics of agile software development. In: Companion
of 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), ACM Press (2004) 46–47

5. Misic, V.B., Gevaert, H., Rennie, M.: Extreme dynamics: Modeling the extreme
programming software development process. In: Proceedings of ProSim04 work-
shop on Software Process Simulation and Modeling. (2004) 237–242

6. Kuppuswami, S., Vivekanandan, K., Rodrigues, P.: A system dynamics simulation
model to find the effects of xp on cost of change curve. In Marchesi, M., Succi, G.,
eds.: XP2003, Conference proceedings, Springer (2003) 54–62

7. Kuppuswami, S., Vivekanandan, K., Ramaswamy, P., Rodrigues, P.: The effects
of individual xp practices on software development effort. SIGSOFT Softw. Eng.
Notes 28 (2003) 6–6

8. Vivekanandan, K.: The Effects of Extreme Programming on Productivity, Cost of
Change and Learning Efficiency. PhD thesis, Doctor of Philosophy in Computer
Science and Engineering (2004)

9. Sanders, D.: Student perceptions of the suitability of extreme and pair program-
ming. In: Proceedings of XP Universe Conference, Raleigh, NC (2001)

10. Turnu, I., Melis, M., Cau, A., Marchesi, M., Setzu, A.: Introducing TDD on a
free-libre open source software project: a simulation experiment. In: Proceedings
of Qute Swap workshop on QUantitative TEchniques for SoftWare Agile Processes.
(2004)

11. KlondikeTeam: Tracking – A Working Experience. Published on:
http://www.communications.xplabs.com/paper2001-2.html (1900)

12. Bossi, P.: Extreme programming applied: a case in the private banking domain.
In: Proceedings of OOP2003. (2003)

13. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2003)
14. George, B., Williams, L.: An initial investigation of test driven development in

industry. In: Proceedings of the 2003 ACM symposium on Applied computing,
ACM Press (2003) 1135–1139

hrchivers@iee.org,{paige,xchge}@cs.york.ac.uk

Web Application Container

Container Communication Sub-system

Application

Message handler

invoke

invoke

standard context api
to obtain userId

A
u
th

o
ri

za
ti

o
n

A
P

I

Authorization Decision System

Assertion Delivery System

Client

SAML

HTTP/S

fred.tingey@bnpparibas.com

•
•
•
•
•
•

oritha@tx.technion.ac.il

yael@cs.technion.ac.il

A Framework for Understanding the Factors
Influencing Pair Programming Success

Mustafa Ally, Fiona Darroch, and Mark Toleman

Department of Information Systems, University of Southern Queensland
Toowoomba Qld 4350 Australia

{Mustafa.Ally,Fiona.Darroch,Mark.Toleman}@usq.edu.au

Abstract. Pair programming is one of the more controversial aspects of
several Agile system development methods, in particular eXtreme Pro-
gramming (XP). Various studies have assessed factors that either drive
the success or suggest advantages (and disadvantages) of pair program-
ming. In this exploratory study the literature on pair programming is
examined and factors distilled. These factors are then compared and con-
trasted with those discovered in our recent Delphi study of pair program-
ming. Gallis et al. (2003) have proposed an initial framework aimed at
providing a comprehensive identification of the major factors impacting
team programming situations including pair programming. However, this
study demonstrates that the framework should be extended to include
an additional category of factors that relate to organizational matters.
These factors will be further refined, and used to develop and empirically
evaluate a conceptual model of pair programming (success).

1 Introduction

Pair programming is a core (some would say mandatory) practice of eXtreme
Programming (XP) [2], and commonly applied and or recommended for use
in conjunction with many other Agile software development methods including
Feature Driven Development, Scrum, Lean Software Development, Crystal, and
Dynamic Systems Development Method.

Various definitions of pair programming have been proposed [12, 20, 23].
Jensen [12] describes it as ‘two programmers working together, side by side, at
one computer collaborating on the same analysis, design, implementation, and
test’. Compared to traditional programming where typically one programmer
is responsible for developing and testing their own code, in pair programming
every code fragment is developed by a team of two programmers working at
the same workstation. There are two roles, viz, a driver controlling the mouse,
keyboard or other input device to write the code and unit tests, and a navigator,
observing and quality assuring the code, asking questions, considering alterna-
tive approaches, identifying defects, and thinking strategically. The partners are
considered equals and will regularly swap roles and partners [22].

The need for this study arises from the lack of an all-encompassing theory
about the factors that influence pair programming success and the extent of
this influence. Pair programming may have a basis in theories of group problem

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 82–91, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Pair Programming Success Factors 83

solving and decision making [8, 14], but any explicit reference to such theories
for its use seems difficult to locate. Most research has tended to be fragmented
and restricted to specific issues. A useful framework for research on team pro-
gramming situations is found in [8]. This paper builds on and extends their
preliminary work by adopting a holistic approach and analyzing and synthesiz-
ing the literature findings and empirical data collected for this study, with the
future aim of developing a conceptual model of pair programming success.

This paper reports an analysis of the literature involving empirical research
on pair programming, to discover theoretical concepts and factors relevant to
the practice. Since pair programming is one of the more contentious aspects of
Agile system development (particularly eXtreme Programming), it has attracted
much attention and consequently become the focus of numerous studies, both in
the field with real-life examples and professionals, and in an educational context
with students as subjects. These studies have employed a range of research meth-
ods to investigate this phenomenon including: case studies, experience reports,
surveys and experiments. Space precludes all the literature being presented and
represented here but that mentioned typifies the studies and views taken.

The paper also reports a comparison of the factors arising from the liter-
ature analysis and our recent Delphi study of pair programming [19]. Briefly,
the Delphi technique emerged from work at the US Department of Defence and
the RAND Corporation in the 1950s. It is a qualitative, structured group in-
teraction technique and its use is well documented [5, 17]. The objective of the
technique is to allow the researcher to obtain a reliable consensus from a panel
of experts where the phenomenon or situation under study is political or emo-
tional and where the decisions affect strong factional interests. The technique
then collates, synthesizes and categorizes those opinions until general consensus
is reached. In the Delphi study, 20 participants engaged in three (3) rounds to
reach consensus on issues about pair programming from both an organizational
and an individual’s perspective. The Delphi participants, comprising academics,
software developers and managers, were selected on the basis of their pair pro-
gramming experience, software development expertise, and industry reputation.
Participants were drawn from a range of different types and sizes of organiza-
tions to give a broad perspective to the study. In the text that follows, selected
representative quotations from Delphi participants are shown in ‘quotes’. This
study reports partial findings from the Delphi study. Further in-depth analysis
of the Delphi study data and the development of models to relate the factors
identified with measures of pair programming success are yet to occur.

This paper is structured as follows. The next section identifies concepts found
in both the literature and from the Delphi study and where the views relevant to
pair programming coincide. In the third section concepts related to pair program-
ming, where the views are opposing, are reviewed. The fourth section reviews
concepts arising in only one source: either the literature or the Delphi study but
not both. The fifth section aligns the factors identified in this study to the initial
framework proposed by [8]. The final section offers conclusions and expectations
for future work.

84 Mustafa Ally, Fiona Darroch, and Mark Toleman

2 Concepts in Common: Literature and Delphi

This section identifies concepts found in both the literature and in the Delphi
study, where the views relevant to pair programming coincide. Literature relevant
to the concept is reported, as is representative mention of the concept in the
Delphi study providing further validation of the practical implications of the
concept. Fifteen concepts are identified.
Quality. There are many references in the literature that support the concept of
improved quality arising from pair programming situations. Poole and Huisman
[15] suggest that pair programming results in improved engineering practices
and quality, as evidenced by low error rates. Improved quality was manifested
in earlier bug detection/prevention [4]. Experiments with ‘industrial’ program-
mers showed error rates were reduced by two-thirds and needed less iterations
to fix them when pairing [12, 13]. Equally, in the Delphi study the issue of im-
proved quality was raised many times, both from organizational and individual
perspectives. The general consensus was that code quality improved through the
pairing process resulting in fewer bugs and better designs. Also on the issue of
code maintenance ‘usually if someone is programming with you, better choices
are made for variable names, better structure, (and) programmers aren’t as lazy
keeping coding standards’.
Team Building and Pair Management. Two aspects of team management
raised in the literature were that pair programming engenders a team spirit; and
that there is a need for training in team building [12, 18]. The Delphi study
affirmed the import of these team management concepts, emphasizing that pair-
ing is a social activity where ‘one has to learn how to work closely with others,
(to) work effectively as a member of a team’. The need to develop these skills
was highlighted in the Delphi study where ‘traditionally, IT study/training alone
does not equip individuals with the interpersonal skills required for effective pair-
ing’. The Delphi also raised issues related to managing the paired programming
process, including pragmatic issues such as pair rotation and ‘what do you do
when there are odd numbers of people on a team?’; resolving personality con-
flicts, for example where ‘an obsessively neat person (is required to) work with a
messy person’ and ‘people that no-one wants to work with’; and logistical issues
such as when ‘pairs need to start/end work at the same time’.
Pair Personality. Dick and Zarnett [6] identified personality traits as play-
ing a vital role in the success, or otherwise, of pair programming. The Del-
phi study identified two specific issues that need to be addressed: personality
conflicts ‘when two people have different ideas, or different styles of dealing
(with) problems’ and ‘some people just don’t like accepting other people’s sug-
gestions/ideas’; and divergent personal styles where ‘some programmers like to
discuss with others, while some do like to work on issues by themselves’ and
‘(pairing) strong personalities together with weak personalities’.
Threatening Environment. Both [6, 18] highlight the problem for individuals
in the pair of the fear of feeling and/or appearing ignorant on some programming
or system development aspect to one’s partner. The Delphi Study supported

Pair Programming Success Factors 85

this indicating that working in pairs may expose an individual’s weaknesses
and competencies. Comments included: ‘Most people new to pairing find the
prospect frightening/threatening – will I appear stupid/ignorant?’ and ‘Sharing
knowledge (and ignorance) on a daily basis can be threatening’.

Project Management. Pair programming raises issues for project manage-
ment. On the positive side, it may act as a backup for absent or departing devel-
opers [7, 23]. This was also reflected in the Delphi study with ‘no one person has
a monopoly on any one section of the code, which should remove organizational
dependencies on particular resources and mitigate risk to the business’. On a
less positive note, there are challenges for project management in terms of plan-
ning and estimation. This was highlighted in the Delphi study by ‘Methods of
planning/estimating need to change when (a) team is pair-programming rather
than tackling tasks as individuals’.

Design and Problem Solving. There is ample evidence that pair program-
ming results in improved design and problem solving through the removal of
‘tunnel vision’ and the exchange of ideas [12, 16, 23]. It is especially suited to
dealing with very complex problems that are too difficult for one person to solve
[4, 21, 23]. Experiments have provided supporting empirical evidence about im-
proved design [13]. This sentiment was affirmed in the Delphi study where it
was felt that design decisions and difficult problem resolutions would be supe-
rior, and that ‘it very often solves complex problems much more effectively than
a single person would’, as well as the potential to ‘find problems in advance’.

Programmer Resistance. An important issue for management consideration
is that many programmers resist (at least initially) pair programming. There
are many facets to this issue including: a reluctance to share ideas; ego problems
where some people think they are always right; and lack of trust where comments
may be taken as personal criticism [18]. Therefore, there is a need for strategies to
introduce pair programming ‘softly’, recognizing that even after coaching some
programmers resist working in pairs [18]. In the Delphi study the resistance to
pairing was also raised, especially among the ‘old-school programmers who find
it difficult to change habits’.

Communication. The literature cites communication as integral to pair pro-
gramming [7], and that it helps to get people to work better [4]. The Delphi study
also supported that pair programming requires and ‘fosters communication skills
in the team’, and ‘improves interactions between team members’.

Knowledge Sharing. The literature proposes that pair programming presents
opportunities for improved knowledge transfer [7]. Pairs learn a great deal from
one another [4] including changed behaviour, habits, ideas and attitudes [18].
The Delphi study also cited improved knowledge transfer in a variety of con-
texts including: that the programmers’ knowledge became more broad-based;
that it enabled a concurrent understanding rather than a post-explanation; that
it resulted in more thorough domain knowledge; and that it could act as a
backup/contingency plan in cases of illness or resignation. In contrast, the Del-
phi study also raised some negative aspects of knowledge sharing viz. that pairing

86 Mustafa Ally, Fiona Darroch, and Mark Toleman

may result in programmers having a broader, but shallower understanding of the
system; and that some may find knowledge sharing to be threatening.
Mentoring. The literature found that pair programming provides an ideal en-
vironment that greatly facilitates mentoring [6, 15]. Positive outcomes were en-
joyed by senior staff [15], as well as less experienced programmers, who learned
from their more experienced partners [12, 13]. Several responses in the Delphi
study attested to the mentoring benefits arising out of their pair programming
experiences: ‘There is a fast tracking of skills development with careful choice of
pairs (for example) mentor/ junior role’ and ‘it can really help with the develop-
ment of new programmers’. However, ‘it helps if you have a good programmer
who is able to explain, or teach, an inexperienced programmer’. The point where
mentoring becomes training was raised in the Delphi study as evidenced by ‘that
each (developer) has a say in how the task is to go ahead (that is) it is a team
not a mentor/junior process. In this case I don’t think it is pair programming
but more like training’.
Environment Requirements. An unsuitable physical environment may act
as a barrier to pair programming success [12]. This was reflected in the Delphi
study. The physical environment should facilitate two programmers working at
a single workstation because ‘most single person desks are not comfortable for
two people to sit at’ and ‘our desks are L-shaped, and as such do not allow two
developers to sit side-by-side comfortably’. This work environment may be more
disruptive as ‘good pairs interact constantly’. Of course individual environmental
preferences may vary, for example a liking for differing styles of keyboards.
Effective Pairs. While there is agreement that the dynamics of the pairs needs
to be carefully considered, there is no agreement as to what constitutes the
most effective pair combinations. For instance, [12] suggests that it is counter-
productive to pair two programmers of equal skill. This sentiment was also re-
flected in the Delphi study: ‘for two equally competent programmers I see this
as a waste of resource’. The contrary view was also expressed that ‘pair pro-
gramming between experienced programmers is often more useful when it comes
to making design decisions’. Two instances where effective pairing may produce
beneficial results are (1) where a new developer is placed in a pairing situation
and can start being productive immediately, and (2) where a junior programmer
might need mentoring. However, the Delphi study revealed that the dynamics of
the pairs needs to be considered carefully. Many combinations would not work
well: a novice programmer could slow down (and potentially annoy) a skilled
programmer, while lowering the self-esteem of the former; two skilled program-
mers working together could have the effect of negating productivity benefits,
for instance when the navigator becomes increasingly frustrated at the lack of
involvement, or when there is contant ‘clashing of the minds’; two novice pro-
grammers could benefit from pair programming, but they run the risk of ‘the
blind leading the blind’.
Shared Responsibility. Both [1, 18] argued that by spreading responsibility
and decision-making load, pairs effectively ‘halve’ the problem solving. Individ-
uals feel more confident about the decisions made, and less overwhelmed by

Pair Programming Success Factors 87

decision-making responsibilities. The Delphi study respondents agreed, noting
that ‘new developers can feel more confident about attacking complex code be-
cause there is someone else there with them’, and further that they are ‘helping
someone else with their assigned duties’.

Human Resource Management. Pair programming has implications for the
recruitment process of hiring programmers [6]. It also challenges traditional hu-
man resource ideas of individual-based performance evaluation and remunera-
tion. These team-based approaches need new management strategies to be con-
sidered that are significantly different from those traditionally used for software
developers [18]. Many of these human resource issues were raised in the Del-
phi study generally: ‘traditional performance measures focus on the individual –
how do you map entrenched HR practices/requirements of a large organization
to a collaborative team structure’; from an organizational perspective: ‘emphasis
moves to team success rather than individual success’; and from an individual
perspective: ‘a programmer cannot look at a subsystem and say “I did that”;
success is now team-based, not individual-based’.

Attitude. A stereotypes of programmers is the ‘lone-hacker’. Pair programming
has been shown to change programmers’ attitude from withdrawn, introverted
and worried, to outgoing, gregarious and confident [1]. Delphi study participants
agreed, noting that ‘some people have entered the industry because it is one
where they can be alone for long periods’ but that ‘one has to learn how to work
closely with others’ and ‘work effectively as a member of a team’.

3 Opposing Perspectives: Literature and Delphi

A significant finding of this study is that some of the issues raised in the lit-
erature were also raised in the Delphi study, but from opposing viewpoints. It
is notable that for these factors the literature is consistently positive about the
concept in contrast to the Delphi study in which the same issues appear as bar-
riers or hindrances. Thus the Delphi study effectively contradicts the practical
implications of the concept as it is presented in the literature.

Morale. The literature suggests that morale can be improved by using pair
programming, especially when working on a difficult or complex system. This
morale ‘boost’ may be in the form of positive reinforcement by peers [15] but
also because ‘there’s someone there to celebrate with when things go right’ [1].
In the Delphi study, the impact of pair programming on morale was raised in a
negative light for example when it came to a mismatch of skills: ‘there’s a high
probability one member of the pair will resent the other one and lower their
morale whilst working with this person’.

Productivity. The literature cites many examples of improved productivity
arising from pair programming [12, 15, 18]. This includes experiments with ‘in-
dustrial’ programmers [12, 13]. This was in part attributed to a shared conscience
where pairs are less likely to indulge in time-wasting activities [23]. Pairs wasted
less time trying to solve problems compared to working alone [12]. However in
the main, the Delphi study suggested lower productivity or at least perceptions

88 Mustafa Ally, Fiona Darroch, and Mark Toleman

of lower productivity. In particular, management is yet to be convinced of the
productivity benefits of pair programming: ‘corporate viewed pairing as being
. . . twice as slow as traditional development’. In certain pairing scenarios pairing
was seen to be less productive: ‘two top programmers would (have) lower pro-
ductivity’. It was even suggested that the quantity of code ‘usually goes down
per hour when taking into account the number of people working on it’. In con-
trast, it was suggested by one participant that the definition of code generation
needed to be considered in developing any measure of productivity: ‘if design
reviews are accepted as being part . . . then productivity gains are higher’.
Development Costs. Clearly, development costs are an important issue for
software construction. The literature suggests code costs are slightly higher ([21]
suggests 15%) with pair programming, but that it is offset by improved code
quality, and minimization of and the earlier detection of bugs [4, 13]. Delphi study
participants were far from convinced. They noted the problem for management of
an apparent doubling of cost for development of the same feature: ‘development
throughput is reduced, not only by halving the number of people actively coding
simultaneously, but also because there is additional collaboration on the design
of the code’. An interesting take on the situation was that ‘a pair wasting time
costs twice as much as a single developer wasting time’.
Enjoyment of Work. Students and professional programmers report finding
their work to be more enjoyable when pairing [23]. However, this is an opposing
viewpoint to the Delphi study where it was described as an unpopular activity
that resulted in lowered personal satisfaction.

4 One Source Concepts: Literature and Delphi

Some factors were raised in either the literature or the Delphi, but not both,
which may suggest that saturation of all the issues involved has not yet occured.

Factors that appeared only in the literature included: project schedule po-
tential where project timelines can be realistically shortened through a change in
workflow to a more speedy iteration of plan, code, test and release [1, 3, 9, 24]; fit
of pair programming to project type where experiments have shown that
pair programming is especially suited to situations characterized by changing re-
quirements, and unfamiliar, challenging or time-consuming problems [13]; code
readability where source code readability is greatly enhanced by using pair pro-
gramming [10]; and distributed pair programming where appropriate tools
can assist distributed pair programming where co-location is not possible [11].

Factors that arose only in the Delphi study included: collective code own-
ership through pair programming minimizes the introduction of coding flaws
and enhances concurrent understanding of the code base; accountability con-
cerns the shift of responsibility from the individual to the pair through collective
code ownership; customer resistance to pair programming through the per-
ception of increased costs; organizational culture and its influence on the
acceptance of pair programming, and the influence of pair programming on the
organization; and solitude and privacy opportunities are reduced when pair
programming, with the increased potential for stress and ‘programmer burnout’.

Pair Programming Success Factors 89

These factors (and possibly others) will be more fully analyzed prior to in-
corporation into a conceptual model.

5 Extension of Gallis et al. (2003) Framework of Factors

An initial framework for research on pair programming has been proposed ([8]
summarized in their Fig. 1). While their study was based on four different config-
urations of team programming, this study focuses specifically on pair program-
ming. In addition, [8] considered a specific set of literature including their own
pair programming studies in developing their research framework. This study ex-
tends their framework by considering additional literature, and individual and
organizational issues identified in our Delphi study. They identified dependent
variables (time, cost, quality, productivity, information and knowledge transfer,
trust and morale, and risk) which were affirmed and context variables, which
were affirmed but further elaborated in this study (see Table 1).

Table 1. Extension and elaboration of the Gallis et al. (2003) framework context
variables (sections where the variable appears in this paper are shown in parenthesis)

Gallis et al. (2003) This study

Subject variables

Education & experience Mentoring (2)

Personality Pair personality (2)
Programmer resistance (2)

Roles Shared responsibility (2)

Communications Communication (2)

Switching partners Project management (2)
Effective pairs (2)
Attitude (2)
Enjoyment of work (3)
Knowledge sharing (2)
Threatening environment (2)

Task variables

Type of development activity Design & problem solving (2)
Code readability (4)

Type of task Fit of pair programming to project type (4)

Environment variables

Software development process Project schedule (4)

Software development tools Distributed pair programming (4)

Workspace facilities Environment requirements (2)
Solitude & privacy (4)

Organizational variables

Team building & pair management (2)
Human resource management (2)
Accountability (4)
Customer resistance (4)
Organizational culture (4)
Collective code ownership (4)

90 Mustafa Ally, Fiona Darroch, and Mark Toleman

Also, our findings reveal an additional category of context variables, namely
organizational factors, which were repeatedly raised by the Delphi study partic-
ipants. The impact of the adoption of pair programming on organizations and
the impact of organizational culture on the practice of pair programming are
clearly important issues for further consideration. This extended framework will
form the basis for the development of a model of pair programming success.

6 Conclusions

Pair programming is controversial: the diverse literature on the practice and dis-
cussion with practitioners confirms the variety of factors affecting its success as
a practice, how it is viewed by practitioners, and its impact on software devel-
opment success. While there is a great deal of evidence in the literature about
pair programming success, there is much work to be done by an organization to
properly prepare for its implementation (especially overcoming resistance), and
it is clear that many of the ‘people’ issues require in-depth consideration.

This study suggests that further research is required particularly to examine
the breakdowns, that is, where the literature and practitioners hold opposing
views. In addition a more complete analysis is required of those factors that
appear in only one of either the literature or the practitioner experience.

Dependent and independent variables have been identified in the framework,
but further refinement is necessary. The next step is to formulate a conceptual
model of pair programming (success), which can be quantitatively tested. This
work is in progress. There is a need for multi-disciplinary and mixed-method
research that will uncover behavioural strategies for a more complete under-
standing of the complexities of the human aspects of pair programming. Other
research includes pair programming experiments with students and practitioners.

References

1. Baer, M.: The New X-Men, viewed 1/12/04,
http://www.wired.com/wired/archive/11.09/xmen.html?pg=1&topic=&topic s

(2003).
2. Beck, K.: Extreme Programming Explained: Embrace Change, Addison Wesley,

Boston (1999).
3. Brooks, F.P.: The Mythical Man-Month Essays on Software Engineering, Anniver-

sary Edition, Addison-Wesley, Boston (1995).
4. Cockburn, A. and Williams, L.: The Costs and Benefits of Pair Programming,

Proceedings of XP2000, Sardinia, Italy, June 21–23 (2000).
5. Day, L.: Delphi Research in the Corporate Environment, in Linstone and Turoff

(Eds) The Delphi Method: Techniques and Applications, Addison-Wesley, London
(1975).

6. Dick, A.J. and Zarnett, B.: Paired Programming and Personality Traits, Proceed-
ings of XP2002, Sardinia, Italy, May 26–29 (2002) 82–85.

7. Flies, D.D.: Is Pair Programming a Valuable Practice?, viewed 6/12/04, http://
csci. mrs.umn.edu/UMMCSciWiki/pub/CSci3903s03/StudentPaperMaterials/

flies-pairprogramming03.pdf (2003).

Pair Programming Success Factors 91

8. Gallis, H., Arisholm, E. and Dyb̊a, T.: An Initial Framework for Research on
Pair Programming, Proceedings of the 2003 International Symposium on Empirical
Software Engineering-ISESE 2003 (2003) 132–142.

9. Glass, R.L.: Software Runaways, Prentice Hall, New Jersey (1998).
10. Grenning, J.: Launching Extreme Programming at a Process-Intensive Company,

IEEE Software, 18(6) (2001) 27–33.
11. Hanks, B.: Empirical Studies of Pair Programming, 2nd International Workshop

on Empirical Evaluation of Agile Processes, New Orleans, Louisiana (2003).
12. Jensen, R.W.: A Pair Programming Experience, Journal of Defense Software En-

gineering, March, viewed 1/12/04,
http://www.stsc.hill.af.mil/crosstalk/2003/03/jensen.html (2003).

13. Lui, K.M. and Chan, K.C.C.: When Does a Pair Outperform Two Individuals?
in M. Marchesi and G. Succi (Eds) Extreme Programming and Aile Processes in
Software Engineering – 4th International Conference, XP 2003 Lecture Notes in
Computer Science 2675 (2003) 225–233.

14. Napier, R.W. and Gershenfeld, M.: Groups: Theory and experience, Sixth Edition.
Boston, Houghton Mifflin Company (1999).

15. Poole, C. and Huisman, J.W.: Using Extreme Programming in a Maintenance
Environment, IEEE Software, 18(6) (2001) 42–50.

16. Pulugurtha, S., Neveu, J. and Lynch, F.: Extreme Programming in a Customer
Services Organization, Proceedings of XP2002, Sardinia, Italy, May 26–29 (2002)
193–194.

17. Rowe, G., Wright, G. and Bolger, F.: Delphi: A Reevaluation of Research and
Theory, Technological Forecasting and Social Change, 39(3) (1991) 235–251.

18. Sharifabdi, K. and Grot, C.: Team Development and Pair Programming – Tasks
and Challenges of the XP Coach, Proceedings of XP2002, Sardinia, Italy, May
26–29 (2002) 166-169.

19. Toleman, M., Ally, M. and Darroch, F.: A Delphi Study of Pair Program-
ming, Working paper, Department of Information Systems, University of Southern
Queensland (2005).

20. Wiki: viewed 1/12/04, http://c2.com/cgi/wiki?PairProgramming (2004).
21. Williams, L.: The Collaborative Software Process, unpublished PhD dissertation,

Department of Computer Science, University of Utah (2000).
22. Williams, L. and Kessler, R.: Pair Programming Illuminated, Addison-Wesley,

Boston (2002).
23. Williams, L., Kessler, R.R., Cunningham, W. and Jeffries, R.: Strengthening the

Case for Pair Programming, IEEE Software, 17(4) (2000) 19–25.
24. Yourdon, E.: Death March: The Complete Developer’s Guide to Surviving ‘Mission

Impossible’ Projects, Prentice Hall, New Jersey (1999).

{canfora,cimitile,visaggio}@unisannio.it

−

−

−

−

−

{h.m.robinson,h.c.sharp}@open.ac.uk

{ageras,smithmr}@ucalgary.ca

jm@ee.ualberta.ca

A.Simons@dcs.shef.ac.uk
http://www.dcs.shef.ac.uk/~ajhs/

∈

∈

∈

→ ∈

≡

∈

∪ ∪ ∪

∈

⊆

⊗

⊗

∪ ⊗
⊗

∈
∪ ⊗ ⊗

∪ ⊗ ∪ ⊗
⊗

∪ ⊗ ∪ ⊗ ⊗

⊆

⊗ ∪ ∪ ⊗

{readk,melnik,maurer}@cpsc.ucalgary.ca

-
-
-
-

public class Division extends ColumnFixture {
 public double numerator, denominator;
 public double quotient() { return numerator/denominator; }
}

public class Division extends ColumnFixture {
 public double numerator, denominator;
 public double quotient() {
 DivisionTool dt = new DivistionTool();
 return dt.divide(numerator, denominator);
 }
}

public class Division extends ColumnFixture {
 public double numerator, denominator;
 public double quotient() { return 8; }
}

−
−

−

−
−
−

−

−
−

−

−

Agile Test Composition

Rick Mugridge1 and Ward Cunningham2

1 University of Auckland, New Zealand
r.mugridge@auckland.ac.nz

2 Cunningham & Cunningham Inc, and Microsoft Corporation
ward@c2.com

Abstract. Storytests in storytest driven development serve two interrelated goals.
On the one hand, they are used to formulate and communicate business rules. On
the other, they are used to verify that a story has been completed and that it hasn’t
been subsequently broken.
There is a small conflict between these views. For their communicative role, sto-
rytests are better to be concise and independent. For automated testing, speed is
important in providing fast feedback, and so it makes sense to combine storytests.
We show how this conflict can be avoided by automatically combining storytests.
Hence the value of storytests for defining the needs of the system is not dimin-
ished when it comes to automated testing.

1 Introduction

In the story-driven development of an agile project [1,2], many storytests (customer
tests) will be created. The initial aim of the storytests is to communicate (and formu-
late) the business objects, processes and rules that are important for the system under
development.

There are many good reasons to keep the storytests concise and concerned with a
single business rule. However, doing this can be at odds with the efficiency and effec-
tiveness of those storytests when they are run against the system under test. In particular,
fast feedback from storytests is crucial to support the storytest-driven development pro-
cess. This applies particularly to business processes, or workflow, where there can be
many interrelated storytests.

We next introduce workflow-based storytests in Fit [3, 4], through a trivial example,
and show the desire for combining them. We then show how we can instead think of
storytests as defining transitions within a directed graph. This allows us to define story-
tests independently, but to combine them automatically in interesting ways. We discuss
a tool that does this, and conclude with some thoughts on combining storytests in other,
more complex ways.

2 Workflow Storytests

Workflow storytests tend to have three components:

– The setup, when the system under test is put into a particular state.
– The change or transition, when something happens to the system.
– The check of the expected resulting state.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 137–144, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

138 Rick Mugridge and Ward Cunningham

For example, here’s a simple storytest in Fit that carries out a video rental and checks
that the number of remaining copies of that video has changed appropriately:

StartVideo

VideosSetUp
name count
A Vampire in Auckland 3
Notre Damned 2

Rent
name rent()
A Vampire in Auckland true

VideosList
name count
A Vampire in Auckland 2
Notre Damned 2

The first two tables define the setup, where the system is started and data about two
videos is entered. The third table carries out a change, when the rental takes place. The
last, check table ensures that the rental counts have changed correctly.

Another storytest for video rentals checks when a video is returned:

StartVideo

VideosSetUp
name count
A Vampire in Auckland 2
Notre Damned 2

Rent
name returns()
A Vampire in Auckland true

VideosList
name count
A Vampire in Auckland 3
Notre Damned 2

With many storytests in a test suite, there can be considerable duplication of the
setup tables. Some testing frameworks provide support for sharing the setup between
storytests. For example, FitNesse [5] and the FolderRunner [6] allow for SetUp (and
TearDown) pages/files, which are automatically included in the storytests of a test
suite as they are run.

However, the check of the first storytest above is almost identical to the setup of
the second storytest. The state of the system under test at the end of the first storytest
is expected to be the same as the state at the start of the second storytest. With the
extra effort of defining the setup and check for the two storytests, there’s an incentive to
simply combine the two storytests. This avoids test-writing effort, and also speeds up
test execution because there is less setup required. Here’s the resulting storytest:

Agile Test Composition 139

StartVideo

VideosSetUp
name count
A Vampire in Auckland 3
Notre Damned 2

Rent
name rent()
A Vampire in Auckland true

VideosList
name count
A Vampire in Auckland 2
Notre Damned 2

Rent
name returns()
A Vampire in Auckland true

VideosList
name count
A Vampire in Auckland 3
Notre Damned 2

But this tangles the storytests and the combined storytest is longer to read as a unit.
If a business change requires that rentals are tested differently, the combined storytest
needs to be changed. If we want other storytests to follow after the first one, we’ll still
need the setup defined in the second storytest on the previous page.

How can we keep the storytests independent, while making better use of the setups
and checks that we’ve defined?

3 Storytests as Transitions

Let’s explicitly treat each storytest as defining a transition from a named start state to
a named final state. For example, our first storytest is then written as:

start state StateInitial

Rent
name rent()
A Vampire in Auckland true

final state StateOne

Our second storytest is written as:

start state StateOne

Rent
name returns()
A Vampire in Auckland true

final state StateInitial

140 Rick Mugridge and Ward Cunningham

States are then defined independently. The common state StateOne is defined as
follows:

Videos
name count
A Vampire in Auckland 2
Notre Damned 2

When a single storytest is to be run as a test, the start state is used as a setup and
the final state as a check. So the interpretation of a state depends on whether it’s used
before or after the transition. If before, the state definition is treated as a setup. If after,
as a check. This is achieved in Fit through having the fixture for any table in a state
choosing to act as either a setup or check, depending on whether it appears before or
after the table switch setup check.

When two storytests are combined into a sequence as a single test, they will need to
share a common state. The final state of the first one is the same as the start state of the
second. Then the resulting test only needs to mention the intermediate state once, as a
check.

For an example of a single storytest, our rental storytest will be generated as a test
with the start state, the transition, switch setup check and the final state, as follows:

Videos
name count
A Vampire in Auckland 3
Notre Damned 2

Rent
name rent()
A Vampire in Auckland true

switch setup check

Videos
name count
A Vampire in Auckland 2
Notre Damned 2

Given this mechanism, a test consisting of a sequence of transitions (storytests) can
be constructed automatically. We could do this by specifying the sequence explicitly.
But that’s not necessary, as we can tell which transitions can follow by the previous
final state.

4 Tests as Graphs

Once we’ve written lots of storytests as transitions which use, and reuse, a set of states,
we end up with a directed graph (actually, possibly a set of unconnected graphs).

We can now make use of the connectivity of the transitions in the graph. For exam-
ple, consider the graph shown in Fig 1, where the states are shown as boxes containing
the numbers of the two videos. The transitions are shown as labelled arcs. For example,
our first transition is labelled t1.

Agile Test Composition 141

Fig. 1. The State Graph

We can automatically construct a sequence of tests (or paths), starting from some
state and following the transitions. For example, the following are possible paths from
the graph in Fig. 1: 1-2, 1-4-5-8, and 6-5.

With a given path, we don’t duplicate the states between the transitions. The first
state in the path is for setup and the rest are checks. If we assume that a path will
usually suceed, we can easily drop out all the intermediate checks. This will provide
poor diagnostic information when things go wrong, so we want to be able to easily run
a failing path with all the checks in place, so we find out as early as possible in the path
where things went wrong.

5 Which Paths?

With cycles in the graph, as in Fig. 1, there are an infinite number of possible paths
(transition sequences). How do we choose which ones? How do we choose some paths
that give good coverage of the storytests (and thus the system under test)? What do we
mean by coverage?

In testing, there are several notions of coverage. We consider three here in relation
to paths in a graph:

– Each transition occurs (at least) once. This is the simplest and weakest coverage
because it doesn’t take account of different transitions. This can be achieved by
having a separate path for each transition. Or it can be achieved by building several
paths that together visit all of the transitions, with the advantage of efficiencies in
test execution.

– Each transition is followed by all transitions that are “strongly” affected by that
change (corresponding to def-use1). This will pick up interaction faults, although
we can’t determine the def-use dependencies automatically.

– Each transition is followed by all transitions that are reachable from that transition
(including itself if there are suitable cycles).

1 Thanks to Brian Marick for pointing this possibility out

142 Rick Mugridge and Ward Cunningham

Several paths are likely to be needed to achieve the second and third forms of cov-
erage. Let’s compare the value of the second and third approaches. If the graph is very
large, we may need lots of paths to achieve the third, which will take a long time to test.

So the second approach gives us the possibility of smaller running times, by select-
ing the pairs of transitions that need to be tested together. But this incurs the manual
cost of deciding on and recording the def-use dependencies between storytests. in ad-
dition, each time the storytests change, as the stories, storytests and system evolve, we
have to reconsider our decisions.

In general, more expensive tests can be run less often, so it’s possible to reach a
balance between fast feedback from tests while getting good coverage. The advantage
of selecting paths automatically is that the approach used can be tailored easily to fast
feedback or to strong cover. For example, faster feedback will be provided when we
just require that each transition occurs (at least) once.

6 Choosing Paths

It is straightforward to select paths that ensure that each transition occurs (at least) once.
We now consider the more complex case, with pairs of transitions, as much the same
approach is used.

We have two ways to choose which pairs of transition are to be tests: either by
someone explicitly stating them or by automatically basing it on reachability. With
reachability, we determine all transitions that can be reached through the graph from a
particular transition, including itself. We now consider the choice of the paths to satisfy
those pairs.

In general, it’s impossible to find an optimal set of paths to cover the pairs required.
For each such pair we can randomly walk the graph from the initial to the final transi-
tion, possibly taking the shortest route. Once we have a set of paths, we can eliminate
any that are redundant (ie, that don’t improve transition-pair coverage).

But how do we know what’s better? If the tests run very fast, it doesn’t matter that
there are hundreds of millions of them. But often, this many tests will take too long to
execute.

7 Searching for Better Paths

The way forward is to use search. A simple approach is to repeatedly generate the
paths for a graph, keeping the best set one after many trials. This process will be cheap
compared to the cost of running the tests, so it’s worth doing.

This however, won’t necessarily give us anything like the best solution, as it’s con-
strained by the topology of the graph. In general, we can do better by taking the paths
that result from the first stage, as above, and processing them further.

We do this using a hill-climbing technique. The idea is to start with a valid solution
(to satisfying the pairs coverage in our case), and make changes to that solution to see
whather we can reduce the cost. This search can be run many times to find the best one
so far.

Agile Test Composition 143

Now hill climbing suffers from local maxima (if we continue with the metaphor and
treat cost as going down). We can avoid this limitation by using simulated annealing.
This allows the search to break out of local maxima by occasionally making changes
to the solution that make things worse (increase the cost). The probability of making
such changes is reduced as the search proceeds, so that it eventually makes a choice. In
general, this leads to better solutions faster than with hill-climbing.

8 The Whole Process

Let’s summarise the steps in terms of a tool that we’ve written that does this. It carries
out the following steps:

1. Read the set of state and transition files for all of the storytests.
2. Construct a graph (or set of graphs) for them, based on the common states.
3. For each graph, use the reachability of the graph to generate all transition pairs (or,

read them from a file that defines the desired ones).
4. For each graph, using the transition pairs, generate a set of paths that satisfy those

pairs.
5. For the paths and corresponding pairs, use search to find a cheaper solution.
6. Translate each path by mapping each transition back into the transition files and

generate each one into a Fit test which is written to a file.

The generated tests can be run at any time, as often as desired. They will need to be
updated each time the storytests change. This can be arranged to be done automatically.
If the graph structure is unaltered, the path generation doesn’t need to be done again; the
previously-generated paths can be reused to map the current independent tests afresh.

9 Experience

We have used this approach on small sets of storytests to test-drive the tool and gain
experience in its use. Further work is needed to make the tool generally applicable and
available.

We have looked at two large test suites to see whether this approach could be used
well with them, assuming that the workflow storytests were restructured into states and
transitions. It appears that the test suites would be clearer and simplier with this change.
It may not be possible to automatically restructure such tests, but it may be possible to
provide some support in their migration.

We have several new projects under way in which workflow storytests are being
written in this style from the start. Early feedback implies that this is a useful way of
thinking about writing workflow tests.

10 Conclusions and Future Work

We have shown how storytests can be written independently and combined to improve
test coverage. This means that there doesn’t need to be a conflict between the needs of

144 Rick Mugridge and Ward Cunningham

the storytest writer with regard to test-driven development [2]. Storytests can be writ-
ten simply and independently. They are combined automatically to satisfy the testing
coverage criteria.

A similar, graph-based approach is used by Holcombe and Ipate, although they are
yet to integrate it with XP development [7].

This approach is fine for single-user systems, but what about when several users
are using a system concurrently? Or when a user, through a GUI, can be going back
and forth between several interaction sequences? It would be great to automatically
combine storytests for these situations. However, the composed tests that we generate
don’t address the issue of interactions between those users.

We are developing an extension of our tool that takes two paths generated from test
graphs and interleaves them. Clearly, there are constraints on what paths can be inter-
leaved. For example, a video can’t be rented in one storytest if they have all already
been rented in an interleaved storytest. There are also constraints on what checks can
be made, because the transitions are written to be independent. We approach these is-
sues by using a simple model (a simulator) to ensure that only valid interleavings are
generated, and by making use of cycles in the graph.

References

1. Storytest was coined by Joshua Kerievsky, http://www.industrialxp.org.
2. Test Driven Development: By Example, Kent Beck, Addison Wesley, 2002.
3. Fit for Developing Software: Framework for Integrated Tests, Rick Mugridge and Ward Cun-

ningham, Prentice-Hall, 2005.
4. Fit http://fit.c2.com.
5. FitNesse http://www.fitnesse.org.
6. FitLibrary, available from https://sourceforge.net/projects/fitlibrary.
7. Complete test generation for Extreme Programming, Mike Holcombe and Florentin Ipate,

procs. XP2004, pp274-277.

smithmr@ucalgary.ca

jm@ee.ualberta.ca

≤
#define NEEDED FIR_length
TEST(FilterASM_impulse, DEVELOPER_TEST) {
 int value, test[NEEDED],coeffs[NEEDED];
 // Impulse response tested
 Set_FilterCoeffs(coeffs, NEEDED);
 for (int i = 0; i < NEEDED; i++) {
 for (int j = 0; j < NEEDED; j++) {
 test[j] = 0; coeffs[j] = j;
 }
 test[i] = 1;
 value = FilterASM(test, coeffs, NEEDED);
 CHECK(value == coeffs[i]);
 }
}

void FilterRelease(float* , float*, int);
void FilterASM(float* , float*, int);

TEST(SPEED_REPORT_Filterfloat, CUSTOMER) {
 float *pt, test [NEEDED];
 float coeffs[NEEDED];
 unsigned long int timeRELEASE, timeASM;

 Set_FilterCoeffs(coeffs, NEEDED);
 EstablishTestData(test, NEEDED);
 MEASURE_EXECUTION_TIME(timeRELEASE,
 FilterRelease(test, coeffs, NEEDED));
 MEASURE_EXECUTION_TIME(timeASM,
 FilterASM(test, coeffs, NEEDED));

 for (int i = 0; i < 100; i++) {
 MAXTIME_ASSERT(timeRELEASE,
 FilterASM(test, coeffs, NEEDED));
 }
}

typedef ulong unsigned long int;
void SetCoreTimerASM(ulong, ulong, ushort);
TEST(Test_SetCoreTimer, SET_UP) {
 __SaveUserRegAndReset ();
 WatchDataClass <unsigned long> coretimer_reg(
 4, pTCNTL, pTPERIOD, pTSCALE, pTCOUNT);

// Setup expected final memory mapped register values
 ulong expected_value[] = {0x0, PERIOD, SCALE, COUNT};
 WATCH_MEMORY_RANGE(coretimer_reg,
 (SetCoreTimerASM(COUNT, PERIOD, SCALE)),
 READ_CHECK | WRITE_CHECK);
 __RecoverUserReg();
 CHECK(coretimer_reg.getReadsWrites() == 4);
 ARRAYS_EQUAL(expected_value,
 coretimer_reg.getFinalValue(), 4);
}

o

o

 MAXTIME_ASSERT(timeRELEASE,
 FilterASM(test, coeffs, NEEDED));

{Bartosz.Walter,Blazej.Pietrzak}@cs.put.poznan.pl

•
•
•

•
•
•
•
•
•

•
•
•
•

•
•

An Eclipse Plugin to Support Agile Reuse�

Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick

Department of Computer Science, University College Dublin,
Belfield, Dublin 4, Ireland

{frank.mccarey,mel.ocinneide,nick}@ucd.ie

Abstract. Reuse in an Agile context is largely an unexplored research
topic. On the surface, these two software engineering techniques would
appear to be incompatible due to contradictory principles. For example,
Agile components are usually accompanied with little or no support ma-
terials, which is likely to hamper their reuse. However we propose that
Agile Reuse is possible and indeed advantageous.
We have developed an Eclipse plug-in, named RASCAL, to support Ag-
ile Reuse. RASCAL is a recommender agent that infers the need for a
reusable component and proactively recommends that component to the
developer using a technique consistent with Agile principles. We present
the benefits and the challenges encountered when implementing an Agile
Reuse tool, paying particular to attention to the XP methodology, and
detail our recommendation technique. Our overall results suggest RAS-
CAL is a promising approach for enabling reuse in an Agile environment.

1 Introduction

The demand for organisations to produce new or enhanced software implemen-
tations quickly in response to an ever-changing environment has fuelled the use
of Agile processes, with Extreme Programming (XP) [1] perhaps the best known
and most widely-used Agile methodology. Reuse of software components is an-
other popular software engineering practice. Software reuse has proven to be an
effective means of reducing development time and costs whilst benefiting the
overall quality of the software [2, 3]. It is not clear however how Reuse and Agile
engineering approaches can be carried out in tandem and very little literature
exists on this specific issue. It would be desirable to employ Agile principles to
produce simple clear software which is easily adaptable to changing requirements
while also employing reuse techniques to improve the software quality and re-
duce development effort, time and cost. We introduce the term Agile Reuse to
describe such an approach. In practice several inherent difficulties arise when
considering the compatibility of Agile and reuse techniques due to differences,
often contradictory, in their fundamental principles. For example Agile software
tends to be simple and domain specific accompanied with minimal support doc-
umentation. Reuse relies on support documentation and favors more generalised
components.
� Funding for this research was provided by IRCSET under grant RS/2003/127

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 162–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Eclipse Plugin to Support Agile Reuse 163

In addition to the above challenges, several other factors hamper reuse in-
dependent of the development process used. A mature software development
organisation is likely to possess a large, growing repository of components from
previous projects. As this repository increases in size, so too does the challenge
for developers to remain conversant with all components. Often the effort and
time taken to locate and integrate reusable components will be perceived to be
costly and to outweigh any potential reuse benefits. Indeed, the reality of strict
schedules and tight deadlines may mean a developer has simply not the time to
search for components; Frakes et al. [4] document other barriers to reuse.

In response to these challenges, various intelligent component retrieval tech-
niques have been developed to assist a developer discover or locate components
in an efficient manner [5]. These techniques share a common shortcoming though;
the developer must initiate the retrieval process. In our work, we shift the atten-
tion from component retrieval to component recommendation. We have devel-
oped a recommender tool, named RASCAL, for software components. RASCAL
has been developed for two purposes. Firstly we wish to recommend software
components that the developer is interested in. Secondly, and more importantly,
we wish to recommend useful components which the developer may not be fa-
miliar with or aware of. We believe recommendations will assist and encourage
developers in making full use of large component repositories in an efficient
manner and in turn will help to promote software reuse. Our work is geared
towards supporting Agile Reuse, paying particular attention to XP. The goal
of RASCAL then is to recommend useful components to a developer in a way
which is consistent with the principles of XP development; reusable components
currently being developed should not need any additional documentation and
reuse of such components should be appealing, straightforward and require little
additional effort from the developer.

In this paper we introduce Agile Reuse, present our support tool RASCAL
and explain the AI recommendation technique employed. An overview of RAS-
CAL’s implementation is given in the following section. In section 3 we detail
Agile Reuse; we discuss the benefits of such reuse in an XP context and identify
the difficulties of providing an XP tool to support this concept. Two recommen-
dation techniques are discussed in section 4; we then present our hybrid approach
followed by a short analysis of the experimental results. In section 5 we review
related work in the area of component search, retrieval and recommendation.
Finally we discuss how RASCAL can be extended and draw general conclusions
in section 6.

2 System Overview

RASCAL is implemented as a plug-in for the Eclipse IDE, as illustrated in fig-
ure 1. As a developer is writing code, RASCAL monitors the methods currently
invoked and uses this information to recommend a candidate set of methods
to this developer. Recommendations are then presented to the developer in the
recommendations view at the bottom right hand corner of the IDE window.
Currently, RASCAL recommends methods from the Swing and AWT toolkits.

164 Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick

Fig. 1. Eclipse Prototype

Figure 2(a) display a general overview of our system which consists of four
components: the active user, the code repository, the usage history collector and
the recommender agent. The active user can be defined as the developer of the
current active class or the current active class itself; the distinction will be clear
from the context of the discussion. When monitoring user preferences we only
consider the usage history of the current active class and not any other classes
this developer may have previously written. The code repository maintains code
from all previous projects and all newly created classes will be added to this
repository. In our work, we built a code repository using open-source software
available from Sourceforge [6].

The usage history collector automatically mines the code repository to ex-
tract component usage histories for all the stored Java classes. This will need
to be done once initially for each class and subsequently when a class is added
to the repository. Component usage histories for all the users are then trans-
formed into a user-item preference database, as shown in figure 2(b), which can
be used to establish similarities between users. Also, for each individual user we
store a list of components based on their actual usage order. The latter informa-
tion is used for Content-Based filtering as discussed in section 4.1. Finally the
recommender agent actively monitors the Java class that the developer is cod-
ing, noting in particular the components used in this class. The agent attempts
to establish a set of neighbouring users who are similar to the active user by
searching the user-item preference database. A set of ordered Java methods is
then recommended to the active user based on the neighbouring users.

An Eclipse Plugin to Support Agile Reuse 165

(a) (b)

Fig. 2. (a) System Overview (b) Sample user-item database

3 Agile Reuse

Software reuse refers to the use of existing artifacts from previous projects as
part of a new development project. Ad hoc reuse has always existed. However
as enterprises invest in developing and maintaining large software systems in an
increasingly competitive environment, there exists the need for an effective and
structured reuse strategy. Ten reusable aspects of any given software project are
presented by Frakes et al. [4] in their discussion of reuse metrics and models,
including requirements and design reuse. In keeping with Agile principles, we
are only concerned with source code reuse in our present work. Successful reuse
has been shown to improve software quality and developer productivity while
reducing overall costs [3] and time to market [2].

Despite these desirable advantages several factors hamper reuse as discussed
in the introductory section. Factors vary from technical difficulties such as sup-
port environments to more pragmatic issues such as managerial and developer
attitudes. As reuse becomes more prominent and accepted in industry, systems
and tools that aid and support reuse become key aspects in achieving successful
reuse of software artifacts [7]. This notion is reflected by the shift in software
reuse research from initially focusing on techniques to develop reusable compo-
nents and component libraries to a focus on supporting reuse through intelligent
storage and retrieval strategies [5].

We have mentioned the benefits of reuse-based software development, how-
ever, it is unclear how this software engineering approach can be carried in
tandem with Agile development. There is an absence of literature and tools to
support this concept. It would be desirable to employ Agile principles to produce
simple clear software which is easily adaptable to changing requirements while
also employing reuse techniques to improve the software quality and reduce de-
velopment effort, time and cost. We describe such an approach as Agile Reuse.
Our work focuses on the technical issues involved in implementing this approach;
we pay particular attention to Agile Reuse in an XP environment though the
issues raised are relevant to all Agile processes. For the following reasons it is
the authors position that Agile Reuse using XP is possible and indeed makes
sense:

166 Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick

– The simple nature of XP software makes its reuse appealing to developers.
Software is produced in small increments and these small units of software
may actually be more reusable than software developed under traditional
rigorous methodologies.

– XP development advocates quick frequent releases of working code. Reuse
will help to achieve this.

– XP developers refactor their code on a regular basis and these very skills
are ideal for integrating and tailoring reusable components to match specific
needs.

In practice several inherent difficulties arise when considering the compati-
bility of XP and reuse techniques due to differences, often contradictory, in their
fundamental principles. Table 1 on the following page displays a sample of such
difficulties that may be encountered and illustrates why providing tool support
for reuse in an XP context is difficult. In addition to this we also explain how
our support tool, RASCAL, can be employed to address these issues. In the
next section we describe how RASCAL automatically retrieves and recommends
components, and present experimental results.

4 Recommendations

4.1 Recommendation Technique
Recommendations are produced using a hybrid of two popular filtering tech-
niques, namely collaborative filtering and content-based filtering. The goal of
Collaborative Filtering (CF) algorithms is to suggest new items or predict the
utility of a certain item for a particular user based on the user’s previous pref-
erence and the opinions of other like-minded users [8]. CF systems are founded
on the belief that users can be clustered. Users in a cluster share preferences
and dislikes for particular items and are likely to agree on future items. In the
context of this paper, a user can be considered a Java class and an item refers
to a software component and more specifically a Java method. Like CF, the goal
of Content-Based Filtering (CBF) [9] is to suggest or to predict the utility of
certain items for a particular user. CBF recommendations are based solely on
an analysis of the items for which the current user has shown preference. Unlike
CF, users are assumed to operate independently. Items which correlate closely
with the user’s preference are likely to be recommended. For example in a news
recommender system we would analyse the keywords from the current user’s
preference to recommend news stories which contain similar keywords; keywords
could be “business” or “sport”. In our work, instead of analysing keywords or
categories we analyse the order in which components are used. In our hybrid
recommendation technique we produce our primary recommendation set using
CF. We then make use of CBF to order the initial recommendation set. The
component which we believe to be most useful to the current developer at this
time will appear first in the recommendation set.

4.2 Evaluation

We have conducted experiments to investigate the accuracy of our hybrid al-
gorithm. The component repository used in these experiments contained 1888

An Eclipse Plugin to Support Agile Reuse 167

Table 1. XP Reuse Challenges and RASCAL

Practice/Belief Challenge RASCAL

Working software
is the primary
measure of
success. Less em-
phasis is placed
on comprehensive
design or support
documentation
and quite often
the source code is
the only available
documentation

Reuse relies on support
documentation. Locating
an undocumented compo-
nent is problematic, at-
tempting to reuse this
component can be daunt-
ing and unappealing to a
developer.

As the developer writes code our agent
is continually searching for reusable
components. Newly developed XP
components do not need support doc-
umentation or commenting for our
agent to locate or recommend them.
These components just need to have
been employed at some stage. Based
on the context of such employment,
our agent will be able to determine
when this component is suitable for
recommendation. No additional devel-
oper effort is required.

Customer sat-
isfaction is the
main priority.
This is achieved
through early and
continuous deliv-
ery of working
code.

The developer is focused
on producing small work-
ing units of software as
early as possible. If effec-
tive reuse support tools
do not exist then a devel-
oper will perceive the time
taken to locate a reusable
component as too costly
and a burden to achieving
their overall goal.

Developers need not initiate the pro-
cess of component search and retrieval.
Instead RASCAL automatically rec-
ommends or delivers a suitable com-
ponent to reuse. We believe compo-
nent delivery will enhance, promote
and increase the feasibility of soft-
ware reuse to XP developers as they
can quickly and easily employ reusable
components and thus produce working
code quickly.

Simplicity is es-
sential.

Software developed with
simplicity in mind will of-
ten tend to be very do-
main specific and perhaps
not as reusable as software
developed for a more gen-
eral or abstract task.

We propose that the simplicity of XP
components fosters their reuse. RAS-
CAL will help to support and encour-
age such reuse which otherwise may
not have occurred. Despite their sim-
plicity, some components may still be
initially challenging to understand and
integrate with existing work. RAS-
CAL produces a recommendation for
a component to a class by examining
similar classes which employ this com-
ponent. Code snippets taken from the
similar classes could prove to be an ef-
fective addition to the minimal doc-
umentation which often accompanies
XP components.

methods from the standard Java Swing library and the Abstract Window Toolkit
(AWT). Recommendations were made for a total of 508 Java classes (users)

168 Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick

which invoked on average 60 methods. These classes were taken from 60 GUI
applications in SourceForge [6].

For each class several sets of recommendations were made. For example, if a
fully developed class used 10 Swing methods, then we removed the 10th method
from the class and a recommendation set was produced for the developer based
on the preceding 9 methods. Following this recommendation, the 9th method
was removed from the class and a new recommendation set was formed for
this developer based on the preceding 8 methods. This process was continued
until just 1 method remained. Each recommendation set contained a maximum
of 5 methods as we believe this to be a sufficient lookahead for a developer.
We evaluated the results using Precision and Recall [10]. Precision represents
the probability that a recommended method is relevant. Recall represents the
probability that a relevant method will be recommended. Based on our repository
of original classes, we also evaluate whether the actual next method a particular
developer invoked is in our recommendation set. This is an important evaluation
as we wish to recommend methods in an realistic and meaningful order.

4.3 Results

Figure 3 displays the results of our recommendation technique. We also present
a baseline result based simply on recommending the five most commonly used
methods at each recommendation stage. The recommendation precision is dis-
played in figure 3(a); the average precision of our technique is 20% which com-
pares favorably with our baseline result. Recall is displayed in figure 3(b); the
average recall, based on our recommendation algorithm, is 36%. That is, if we
were to recommend ten methods, then on average almost four of those recom-
mended methods would be relevant. Finally, in figure 3(c) we display the like-
lihood that the next method the developer will actually invoked will be in our
recommendation set; on average there is 43% likelihood that it will be. Further
to this encouraging result, we see that RASCAL can make reasonably accurate
predictions at a relatively early stage in the class’s development. For example,
when a developer has invoked 20% or less of the total methods she will employ
then there is 42% likelihood that RASCAL will correctly recommend the next
invocation. We only present the results of our hybrid approach here as we have
ascertained that this algorithm leads to the most accurate predictions; [11] de-
tails the implementation details, benefits and accuracy of the individual CF and
CBF algorithms.

5 Related Work

Much research on tool support for software reuse has concentrated on intelligent
search and retrieval techniques which are dependent on developer initiation, for
example [5]. However, to effectively and realistically support component reuse it
is tremendously important that component retrieval be complemented with unso-
licited component delivery/recommendation. One technique to address this issue
is CodeBroker [12]. CodeBroker infers the need for components and proactively

An Eclipse Plugin to Support Agile Reuse 169

(a) (b) (c)

Fig. 3. (a) Precision (b) Recall (c) Next found

recommends components, with examples, that match the inferred needs. The
need for a component is inferred by monitoring developer activities, in particu-
lar developer comments and method signature. This solution greatly improves
on traditional retrieval approaches, but it does not address the requirements
of Agile Reuse. The reusable components in the repository must be sufficiently
commented to allow matching, this may exclude many components. Developers
must actively and correctly comment their code which currently they may not
do. Active commenting is an additional strain placed on developers which may
make the use of CodeBroker less appealing and particularly unsuitable for XP
and other Agile methodologies.

Ohsugi et al. [13] propose a system to allow users discover useful functions at
a low cost in application software such as MS Word and MS Excel for the pur-
pose of improving the user’s productivity. For clarity, Convert Text to Table or
Insert Picture are examples of MS Word functions. A set of candidate functions
is recommended to the individual, based on the opinions of like-minded users.
The technique proposed is an extension of traditional collaborative filtering algo-
rithms used in mainstream recommender systems such as Amazon. In our work
we apply Ohsugi’s principle to a different problem domain, namely reusable soft-
ware components. Similar to CodeBroker [12] our goal is to recommend a set
of candidate software components to a developer; however our recommendations
are based on the opinions of like-minded developers and not the developer’s com-
ments/method signature. Unlike the related works, our technique is specifically
designed to assist reuse in an XP environment.

6 Conclusions

In this paper we introduced the concept of Agile Reuse and identified specific
issues which hamper such reuse. In addressing these issues, we evaluated col-
laborative and content-based filtering and found a hybrid approach to be most
effective. Our recommendation scheme addresses various shortcomings of pre-
vious solutions to the component retrieval problem; user context and problem
domain are considered while no additional requirements are placed on the de-

170 Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick

veloper. Opportunities exist to expand RASCAL’s scope though. Firstly, we will
develop RASCAL into a general recommender capable of recommending various
component types. RASCAL will then be extended to allow greater user interac-
tion; for example an accepted recommendation will be automatically added to
the user’s code. With any unsolicited recommender, delivery is important. Using
established industrial links, extensive user trials are planned which we hope will
foster a more usable application.

Recommender systems are a powerful technology that can cheaply extract
knowledge for a software company from its code repositories and then exploit this
knowledge in future developments. We have demonstrated that RASCAL offers
real promise for allowing developers discover reusable components and is well
suited to Agile development. When little information is known about the user we
can nevertheless make reasonably good predictions and future work will likely
strengthen recommendations. We believe RASCAL will aid developers whilst
improving their productivity, enhance the quality of their code and promoting
software reuse.

References

1. Beck, K.: XP explained: embrace change. Addison-Wesley Publishing Co. (2000)
2. Yongbeom, K., Stohr, E.: Software reuse: Survey and research directions. Man-

agement Information Systems 14 (1998) 113–147
3. Hooper, J., Chester, R. In: Software Reuse: Guidelines and Methods. Plenum

Press, NY (1991)
4. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Surv. 28 (1996)
5. Yao, H., Etzkorn, L.: Towards a semantic-based approach for software reusable

component classification and retrieval. In: Proceedings of the 42nd annual South-
east regional conference, ACM Press (2004) 110–115

6. OSTG: Open source technology group inc (ostg). http://sourceforge.net. (2004)
7. Daudjee, K.S., Toptsis, A.A.: A technique for automatically organizing software

libraries for software reuse. In: Proceedings of the 1994 conference of the Centre
for Advanced Studies on Collaborative research, IBM Press (1994) 12

8. Sarwar, B.M., Karypis, G., Konstan, J.A., Reidl, J.: Item-based collaborative
filtering recommendation algorithms. In: World Wide Web. (2001) 285–295

9. Oard, D., Marchionini, G.: A conceptual framework for text filtering process.
Technical report, University of Maryland, College Park (1996)

10. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,
New York (1999)

11. McCarey, F., Cinneide, M., Kushmerick, N.: Knowledge reuse for software reuse.
In: Submitted to the 17th International Conference on Software Engineering and
Knowledge Engineering. (2005)

12. Yunwen, Y., Fischer, G.: Information delivery in support of learning reusable soft-
ware components on demand. In: Proceedings of the 7th international conference
on Intelligent user interfaces, ACM Press (2002) 159–166

13. Ohsugi, N., Monden, A., Matsumoto, K.: A recommendation system for software
function discovery. In: Proceedings of the 9th Asia-Pacific SE Conference. (2002)

Minna.Pikkarainen@vtt.fi

Ulla.Passoja@Hantro.com

XP Expanded:
Distributed Extreme Programming

Keith Braithwaite and Tim Joyce

WDS Global, Forelle House, Marshes End, Upton Road, Poole
{keith.braithwaite,tim.joyce}@wdsglobal.com

Abstract. Colocation has come to be seen as a necessary precondition
for obtaining the majority of the benefits of XP. Without colocation
teams expect to struggle, to compromise and to trade off the benefits of
XP vs the benefits of distributed development. We have found that you
can stay true to the principles and not compromise the practices of XP in
a distributed environment. Thus, business can realize both the benefits
of distributed and of truly agile development.

Keywords: Agile, XP, Extreme Programming, Scrum, distributed,
multi-site, outsourcing

1 Introduction

The small but growing literature on “Distributed Agile development” takes a
largely pessimistic view. Often, writers assume that having the members of a
team distributed widely in space (and/or time) would deal a fatal blow to the
communication mechanisms upon which agile development relies. They then
infer that, should one attempt to use an Agile method (for example, XP) in
a distributed environment, those practices which embody the communication
value in a colocated setting would be near–fatally compromised. Thus that XP
itself would be compromised and various additional practices of a questionable
nature (often forms of documentation, or of process automation) would need to
be introduced. So it is believed that much of the benefit of “agile” development
would be lost, and that winning much of the rest would be very challenging.

Note the subjunctive mood throughout the previous paragraph. Much of the
Distributed Agile literature is speculative. The few reports of distributed agile
development in practice are stories of hedging, compromise, and of profoundly
mixed results. These are valuable data points, but do not address the question:
what happens if a team distributed in space and time works as fully as possible
in alignment with the principles of, say, XP?

Our observation is that such a team can succeed, and win for its business
sponsors both the advantages of agile development and of distributed working.

2 Distributed Agile Development

Various terms, such as Distributed Agile Development and Distributed Extreme
Programming are currently terms used to refer to a variety of process and prac-

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 180–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

XP Expanded: Distributed Extreme Programming 181

tices associated with non-colocated development teams. When we need to refer
to teams that are not colocated we prefer to say “cross-site”.

We distinguish these three general cases for non-colocated, Agile aligned
development:

Agile Outsourcing (AO): Where an agile team is created at an appropriately
low cost offshore location. Requirements are generated onshore, and commu-
nicated offshore using documents, people and tests. There may be some code
sharing between the onshore and offshore team, but not shared ownership as
commonly understood. This approach has a degree of popularity and has been
widely discussed, notably in [10] and [14].

Agile Dispersed Development (ADD): As practiced by much of the Open
Source community and some commercial companies [6]. Developers tend to be
physically alone, but connected through a variety of communication channels.
Practices such as frequent releases and continuous integration are employed,
Pair Programming1 and other team based activities are not (or only in a very
limited form). Because of this, aspects of shared code ownership are often. In the
open source case, this results in practices such as Benign Dictator, and Trusted
Lieutenant.

Distributed Agile Development (DAD): Customers are distributed. One
development team is distributed evenly over several sites to remain close to the
customers. Rich, high density communication ensures that Agile principles and
practices are not compromised, locally or globally.

2.1 Wireless Data Services Case

WDS is a global business providing various services to mobile telephone network
operators and handset manufacturers. These include web based software for self-
serve device management. At the end of 2003, core services were developed and
deployed as APIs by a UK based team using XP. In each region a (non XP) team
would use these internal APIs to deliver on locally generated requirements.

At the beginning of 2004, we brought all developers together in the UK for an
XP and Java “boot camp”. This time was also used to establish a single global
team. Developers were then dispersed to three sites (UK, Seattle, Singapore), and
Distributed Extreme Programming (DXP) begun in April 2004. The business
considers the change to be successful.

3 How to Remain Extreme Around the World

Given that there is a business need to have developers around the world work
together, how can agility be preserved?
1 We distinguish the names of practices by using this face

182 Keith Braithwaite and Tim Joyce

At one level, the answer is quite simple: maintain a commitment to the value
judgments that characterise the core of all agile methods, the Agile Manifesto
[2]. Some writers take it that in applying agile approaches to distributed work-
ing must require sophisticated tools and complicated process models [12]. This
seems at odds with the spirit of the manifesto. Others report some success on
small–scale pilot projects using a much more direct approach [9]. We have shown
that the direct application of XP to full–scale commercial development can be
successful.

The implementation of the Agile Manifesto that we prefer is XP. As described
in [1], this uses various Primary and Corollary Practices to embody Principles
which manifest Values. We also apply many project management ideas adopted
from Scrum [3]. Of the XP Values, we find that in the DXP case, Communication
and Respect are especially emphasized. The key problems in DXP are to main-
tain sufficiently rich communication, and a sufficient level of respect, between
colleagues separated widely in time and space.

Our experience is that these problems are soluble in a way wholly aligned
with Agile principles. We consider that the defining characteristics of DXP are
the use of: One Team, Balanced Sites and Distributed Standup, One Team, One
Codebase.

4 Can Distributed Development Be Truly Agile?

The question is rather: can successful Distributed Development be anything
other than Agile?

4.1 Traditional Distributed Development

We did not investigate the literature particularly thoroughly before experiment-
ing with DXP 2. Instead, we expressed the XP value of Courage. Confident that
the principles of Agile development, and the practices of XP and Scrum, were
fundamentally sound we started with the obvious first steps to implement DXP.

Subsequently we read Carmel [4]. The most interesting feature of this work
(which predates the Agile revival) is that most of the content is aimed at con-
vincing a plan–following, top–down, command–and–control manager of the value
judgments captured in the Agile Manifesto. Carmel identifies “loss of teamness”
and “loss of communication richness” as two of the five centrifugal forces that
will damage a global team. His solutions revolve around such items as “lateral
communication” (communication between co–workers across the width of the or-
ganization chart), encouraging a common team culture, building trust through
face–to–face meetings, and so on.

It’s our claim that almost all of the best practices presented by Carmel for
building dispersed traditional development teams will be second nature to an
organisation practiced at XP.

2 Perhaps if we had, would have been scared off

XP Expanded: Distributed Extreme Programming 183

4.2 The Colocation Shibboleth

Having all team members in one room is a defining characteristic of default XP.
Beck gives Sit Together as the first Primary Practice of XP. However, he also
states clearly that “[...] teams can be distributed and do XP”.

By definition, distributed teams cannot achieve Sit Together as a whole, al-
though each regional group can and should be colocated itself (as developers in
WDS’s regions are). However, if we look beyond the one–room practice to the
value of Communication it manifests we can see the possibility of expressing that
value in other ways.

We submit that the injunction to put everyone in one room is an absolutely
necessary rule to apply when introducing XP. Non-agile development practice
often trains developers to be solitary, uncommunicative and non collaborative.
Together with pairing, Sit Together is very effective at breaking those habits—as
required to roll out the rest of XP. But, if a body of developers are available
already trained to work gregariously, to communicate as much as possible, to seek
out collaborators, then perhaps the need for colocation as the prime mechanism
to manifest the Communication value is weakened.

Beck’s discussion describes the XP practices as theories, with attached pre-
dictions. The Sit Together theory predicts that “[...] the more face time you have,
the more humane and productive the project.” We would generalise this to state
that the more, more rich, communication you have, the more humane and pro-
ductive the project. Face time is still much preferred, but it turns out not to be
a uniquely valuable medium.

5 Practices for DXP

We have identified a number of practices for cross-site development, with partic-
ular emphasis on agile techniques. We present them here as candidate patterns
in something like Portland Form [5]. The patterns are organised by thematic
area, and ordered by significance within an area—as indicated by the number of
*’s suffixed to the name.

5.1 People

These practices relate mostly to human interactions, the most difficult and also
most crucial aspect of DXP. Each site implementing these practices needs people
with experience of co-located XP.

One Team ***

Business needs lead to development resources distributed widely in space and
time. Communication between members is compromised. Trust and cooperation
can break down.
Therefore: Maintain as far as possible a singe team identity across all locations.
Encourage non-business communication, encourage any activity that lets team

184 Keith Braithwaite and Tim Joyce

members share a joke or a cultural reference. Cherish every successful interac-
tion. Let people play. A high level trust is maintained, resulting in fewer conflicts.
When work related conflicts arise, a joke can defuse the tension.

Relates to: Kickoff; Multiple Communication Modes; One Team, One Codebase; One

Team, One Build

As seen in: Seems to be novel as stated, we’d love to learn otherwise

Balanced Sites ***

Team members at one location are sometimes blocked while waiting for actions
or decisions taken at another site. This creates resentment on both sides; the
dependent site resents the productivity impact and the loss of decision making
power; the depended site resents the interruption of thought and activity.
Therefore: Make all sites equal in skill and numbers, and empowered to take
any decision, so that inter–site dependencies are minimized. There is no delay
between when a decision or action is required and when it is performed, main-
taining flow. All team members feel fully engaged.

Relates to: One Team; Distributed Standup (even though dependencies are minimized,

force communication anyway); Ambassador

As seen in: Seems to be novel, as described. We’d love to learn otherwise

Ambassador **

Members of a team in one location find it hard to understand the point of view
of members in another location. Trust and cooperation break down, it is hard
for one local group to work effectively with another.
Therefore: Send an ambassador from one region to another, for an extended
period. Such a local representative can interpret the communications of the re-
mote group, demonstrate that “they” are just like “us”, and influence locally
on behalf of the remote group when required. Ambassadors also carry business
domain knowledge between sites.

Relates to: Visits Build Trust; One Team; Balanced Sites; Multiple Communication Modes

As seen in: [8], [11], [7]

Visits Build Trust **

Team members find it hard to have faith in the good intentions of remove col-
leagues. Blamestorming replaces collaboration, fingerpointing replaces problem
solving.
Therefore: Have team members rotate through locations continually. Always
have at least one team member away from their home location. Trust in a team
member currently remote can be maintained, based on the experience of having
worked with them colocated in the past.

Relates to: AmbassadorOne Team, Multiple Communication Modes

As seen in: [4], [11], [8]

XP Expanded: Distributed Extreme Programming 185

Kickoff *

A new project is to start. All team members involved must synchronise their
ideas about it.
Therefore: Bring everyone involved in the project together in one place at the
same time. Future distributed working is informed by a cohesive view of the
project, and secure interpersonal relationships, formed while the advantages of
Sit Together were available.

Relates to: One Team; Multiple Communication Modes

As seen in: [4], [8], [11]

5.2 Communication

These patterns consider communication, the lifeblood of agile development and
the greatest challenge for DXP.

Distributed Standup ***

Team members remote from one another cannot easily see each other’s story
board, overhear technical discussions, share in resolving issues. Remote mem-
bers’ idea of the state of the team fall out of sync, damaging the cohesion of the
team.
Therefore: Have a video conference session running whenever possible, but at
least once a day, every day for each pair of sites adjacent in time. Force an over-
lap if required. No member can forget that the remote members have a stake,
status is shared (perhaps transitively).

Relates to: One Team; Balanced Sites

As seen in: [?]

Multiple Communication Modes ***

The members of a team cannot be colocated. Face–to–face communication (ex-
plicit and “overhearing”) cannot be used to maintain tacit knowledge. Many
different kinds of knowledge must be shared, often during sharply time–limited
handover slots.
Therefore: Provide team members with as many communication media as pos-
sible. At least these: individual and conference telephone, teleconference, video
conference, email, IM, wiki, VNC. Communication is fostered greatly, and many
different modes of communication can be applied in parallel. A good conversa-
tion to hear at a videoconference standup meeting would be: site 1: We had
an idea for that problem, I’ve just jabbered you the URL for the wiki page that
discusses our example code, see what you think. Site 2: Great! Let’s remote–pair
on this tomorrow.

Relates to: One Team; Wiki as Shared Location; Remote Pair Ambassador; Code is Com-

munication

As seen in: [8], [7], [4]

186 Keith Braithwaite and Tim Joyce

Wiki as Shared Location **

Team members can meet neither at the same time nor at the same place. Com-
munication has to be both over low bandwidth channels and asynchronous. Mem-
bers do not feel members of “one team” due to disjointed communication.
Therefore: Use a wiki. A shared virtual place is created where notices may be
posted, asynchronous conversations take place in a persistent form, and a feeling
of community fostered.

Relates to: Multiple Communication Modes; One Team; Code is Communication is dual

to this practice

As seen in: Many sources mention team wiki’s, but the notion of wiki as shared virtual

location is not explicit. The walls of public lavatories.

Remote Pair **

Developers that need to Pair are remote. Code changes need to be shared. A
familiar shared environment needs to be available to allow pair programming
between sites.
Therefore: Establish an easy-to-start environment with rich communication
(video, text and sound) and a shared development tool (use VNC or similar
to share an IDE). Agree a regular time when remote pairing will occur. Com-
plex, code-level decisions and communication will occur in a familiar way.

Relates to: One Team, One Codebase; Many Communication Modes; Code is Commu-

nication

As seen in: [12], many informal mentions on newsgroups, etc.

5.3 Code

These patterns address what is perhaps the easiest aspect of DXP, the technical.

One Team, One Codebase ***

Widely separated team members need to maintain a common identity as techni-
cal problem solvers. They need to share rights and responsibilities toward each
others’ work, just as colocated workers do.
Therefore: Have all team members everywhere use a single, shared codebase.
Technical problems and their solutions are shared. The whole team always has
a common point of reference.

Relates to: One Team; Code is Communication

As seen in: Seems to be novel as stated, we’d love to learn otherwise. This practice

largely opposed to much of the advice given in [13].

Functional Tests Capture Requirements **

Requirements need to be transmitted from one site to another. A great deal of
time and energy would be consumed to make requirements documents work as
a medium.

XP Expanded: Distributed Extreme Programming 187

Therefore: Use failing functional tests to express the required functionality. The
requirement is expressed unambiguously.

Relates to: Code is Communication; Tests Announce Intention

As seen in: [8]

One Team, One Build **

All team members need to share responsibility for maintaining all code in a
working state. With multiple integration machines, inevitable environment skew
can hide the reasons for build failure. Arguments break out between sites as to
whether a break is because of “your build machine” or “our code”, destroying
shared responsibility and respect.
Therefore: Have a single build server. Set up an RSS feed so that each site can
hear the build passing or failing. The build status of the global codebase is a
single boolean value.

Relates to: One Team, One Team, One Codebase

As seen in: Seems to be novel as stated, we’d love to learn otherwise. This contradicts

the advice given in [13] for large teams: §3.4 states “Each [sub]team can and should

set up their own automated integration server”

Code is Communication **

Colleagues far apart cannot discuss technical issues, design ideas, requirements
face–to–face. This can threaten the conceptual integrity of a code base (and
team).
Therefore: Use the code base as a communications medium between sites. Con-
verse with remote colleagues via the codebase. Express problems as failing tests
in a suite outside the build, express design ideas as working code in a scratch
area of the repository. Code is written for humans to read and only incidentally
for computers to execute — attributed to Knuth. A unique, unambiguous, shared
artifact exists to transmit technical ideas.

Relates to: Tests Announce Intention; Wiki as Shared Location is dual to this practice.

As seen in: Seems to be novel as described, we’d love to learn otherwise. Although “ask

the code” is a common XP slogan, it would seem to mean something rather different.

Tests Announce Intention *

Colleagues working on the same code base cannot “overhear” that they are about
to collide on the same region of the code and so coordinate their efforts. Remote
teams suffer integration races.
Therefore: Use functional and/or acceptance tests to publish the intention to
work in a particular area. Remote colleagues can identify, asynchronously and
unambiguously, what areas of the code others are likely to be changing soon.

Relates to: Code is Communication

188 Keith Braithwaite and Tim Joyce

6 Conclusion

A need for Distributed development exists in business, a desire to remain Ex-
treme exists in the developer community. There is no need to compromise the
second to accommodate the first.

Remaining firmly aligned to Agile principles allows development teams to
grow with businesses as they globalize.

References

1. Beck, K. with Andres, C.: Extreme Programming Explained: Embrace Change
(2nd Edition) Addison–Wesley (2004)

2. Beck, K. et al: The Agile Manifesto http://www.agilemanifesto.org/
3. Beedle, M., Schwaber, K.: Agile Software Development with Scrum Prentice Hall

(2002)
4. Carmel, E.: Global Software Teams Prentice Hall (1999)
5. Cunningham, W.: About the Portland Form

http://c2.com/ppr/about/portland.html (as at end 2004)
6. Daniels, J., Dyson, P.: CS2 Dispersed Development OT2004

http://www.spa2005.org/ot2004/programme.shtml (2004)
7. Jensen, B., Zilmer, A.: Cross-Continent Development Using Scrum and XP

http://www.informatik.uni-trier.de/˜ley/db/conf/xpu/xp2003.html (2003)
8. Fowler, M.: Using an Agile Software Process with Offshore Development

http://martinfowler.com/articles/agileOffshore.html (as at April 2004)
9. Kircher, M., Jain, P., Corsaro, A., Levine, D.: Distributed eXtreme Programming

10. Martin, A., Biddle, R., Noble, J.: When XP Met Outsourcing XP 2004, LNCS 3092
(2004)

11. Poole, C. J.: Distributed Product Development using Extreme Programming XP
2004, LNCS 3092 (2004)

12. Reeves, M., Zhu, J.: Moomba–A Collaborative Environment for Supporting Dis-
tributed Extreme Programming in Global Software Development. XP 2004, LNCS
3092 (2004)

13. Rogers, R. O.: Scaling Continuous Integration XP 2004, LNCS 3092 (2004)
14. Simons, M.: Internationally Agile Informit.com (2002)

http://www.informit.com/articles/article.asp?p=25929

{heikki.keranen,pekka.abrahamsson}@vtt.fi

•

•

•

Extreme Programming for Critical Systems?

Ian Sommerville

Lancaster University
is@comp.lancs.ac.uk

Abstract. From the perspective of a ‘sympathetic sceptic’, this talk will
discuss the issues around the development of critical systems - systems
where the costs of failure are very high - and whether or not extreme
programming practices can be adapted and used in critical systems en-
gineering. I will start by discussing the characteristics of critical systems
development, such as the need to justify claims about the system de-
pendability, and the differences in development culture between XP and
critical systems development. I will then go on to discuss how different
XP practices reduce or increase the risks of software failure, especially
when the reality of implementing XP is considered. I will identify weak-
nesses in the XP process, such as the use of user stories for requirements
definition, that have to be addressed before XP practices will be con-
sidered by the critical systems community. I will then suggest how the
cultural barriers between the communities might be broken down and
will propose how it might be possible to adapt XP practice to the de-
velopment of some types of critical system by introducing ‘dependability
spikes’ into the XP process.

Presenter

Ian Sommerville is Professor of Software Engineering at Lancaster University
and has 25 years of experience in software engineering teaching and research. His
textbook on software engineering, now in its 7th edition, has been widely used
and adopted. Ian has research interests in system dependability, requirements
engineering, service-centric systems and social and human issues in software
engineering. He is convinced that conventional software engineering has much to
learn from XP if only the communities could talk to rather than at each other.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, p. 198, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

That Elusive Business Value:
Some Lessons from the Top

John Favaro

jfavaro@tin.it

Abstract. Amid the enthusiasm generated by the success of agile ap-
proaches to software development in recent years, we have begun to ex-
trapolate the principles of agile methodologies to propose innovative new
ways of managing entire businesses, such as “self-reflective fractal orga-
nizations.” However, it is important to resist the tendency toward an at-
titude that managers have more to learn from us than we do from them.
Such an attitude is based on the assumption of a direct and automatic
link between agile development and business value creation that is often
more imaginary than real, and certainly harder for them to recognize
than us. Even a perfectly organized, successful agile project may fail to
deliver any business value at all; even more often, we are unable even to
judge whether any business value has been created. The potential of agile
approaches to contribute to value creation is large, but only if we recog-
nize that we must reach beyond them to study and learn from the best
managers. This starts with an appreciation of how difficult (and rare)
it is to create a sustainable competitive advantage with IT investment.
Some lessons from top management can help us understand the sources
of competitive advantage and how we can help our customers in their
search for that elusive business value. In so doing, we enable ourselves to
create better business cases for managers to invest in software develop-
ment and we sharpen our own focus on what software development will
create the most value for the business.

Presenter

John Favaro is the founder of Consulenza Informatica in Pisa, Italy. In 1996 he
introduced the principles of Value Based Management in software engineering in
an article in IEEE Software on the relationship between quality management and
value creation. In 1998 he introduced Value Based Software Reuse Investment,
applying the ideas of Value Based Management and option pricing theory to
the analysis of investments in software reuse. Recently he has investigated the
relationship of Value Based Management to agile development processes. He is a
founding member of the International Society for the Advancement of Software
Education (ISASE), and was Guest Editor of the May/June 2004 Special Issue of
IEEE Software on “Return on Investment in the Software Industry.” He took his
degrees in computer science at Yale University and the University of California
at Berkeley.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, p. 199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Agility – Coming of Age

Jutta Eckstein

www.jeckstein.com

Abstract. XP exists for almost ten years now. The latest Standish Re-
port characterizes agile development as a top success factor. The new
certified, standardized, and official process model of the German gov-
ernment, V-Modell XT, includes an agile project strategy. These are all
clear signs that the agile approach is coming of age.
Being a grown-up doesn’t mean being fully developed – in contrary the
need still exists to continuously seek for opportunities for improvement.
Thus, instead of being dogmatic about practices, we have to use the
agile value system as our guidance for improvement and for creating and
customizing practices that help the teams to succeed.

Presenter

Jutta Eckstein (www.jeckstein.com, info@jeckstein.com) is an independent con-
sultant and trainer from Braunschweig, Germany. She has a unique experience in
applying agile processes within medium-sized to large mission-critical projects.
This is also the topic of her book Agile Software Development in the Large.
Besides engineering software she has been designing and teaching OT courses in
industry. Having completed a course of teacher training and led many ’train the
trainer’ programs in industry, she focuses also on techniques which help teach
OT and is a main lead in the pedagogical patterns project. She has presented
work in her main areas at ACCU (UK), OOPSLA (USA), OT (UK), XP (Italy
and Germany) and XP and Agile Universe (USA).

She is a member of the board of the AgileAlliance and a member of the
program committee of many different European and American conferences in
the area of agile development, object-orientation and patterns.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, p. 200, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Another Notch

Kent Beck

Three Rivers Institute
kent@threeriversinstitute.org

Summary. How do we take XP to the next level? How do we get respect
and freedom to work as we’d like? How do we get them to listen to us?
XP has successfully raised expectations for what is technically possible
with software development. The next challenge is realizing that poten-
tial. Doing so requires not more technical skills, but better relationships
within the organization, a shift in attitude and perspective.
It’s natural to want to have impact in the world. How can we best have
impact on organizations? Counterintuitively, the way we gain influence
is to listen. The way to gain freedom is to be accountable. The way to get
respect is to give it. The way to get them to listen to us is to eliminate
the dichotomy between us. We are all on the same side working towards a
more effective software development process for the good of our company.
What we need is a change in perspective. XPers should first demonstrate
that others have impact on them, by listening and acting on what others
say. We need to offer accountability. With a record of careful listening
and trustworthiness, we will be well-positioned to be heard when the
organization has a problem and we have an idea.
A common barrier to organizational impact for programmers is our sense
of “being special”. The days of the prima donna programmer are over.
What would happen if we treated everyone we talked to as if their ideas,
needs, and perspectives had equal value with our own? That would be
extreme. It would require a shift in our beliefs about organizations and
our contributions to them.
XP has improved programmers work. Influence at the next level uses the
same principles apply that have guided XP thus far. Respect, mutual
benefit, improvement in baby steps from where we are today; these are
principles that can guide the maturation of an XP team to be a full
partner in business. These are the principles that, if applied with humility
and awareness, will help us take XP up another notch in impact and
influence.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, p. 201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

m.ramachandran@leedsmet.ac.uk

•
•
•

•

•

laceves@udem.edu.mx
http://www.udem.edu.mx

ecanseco@yahoo.com
mruanova@yahoo.com

•

•

•

Multithreading and Web Applications:
Further Adventures in Acceptance Testing

Johan Andersson, Geoff Bache, and Claes Verdoes

Carmen Systems AB, Odinsgatan 9, SE-41103 Göteborg, Sweden
geoff.bache@carmensystems.com

Abstract. At XP2004, two of the authors presented an “agile record/
replay” approach[1] to GUI Acceptance Testing based on recording high
level use-cases. In the past year we have run a project to attempt to write
tests using this approach for three different Carmen Systems products.[2]
During this project we have met new challenges presented by multi-
threaded GUIs and web GUIs, and in the process we have produced
JUseCase[5] – a Java Swing equivalent of PyUseCase[5], presented last
year, and for web application testing we produced WebUseCase[6] – a
browser-like use-case recorder based on JUseCase. Via these use-case
recorders, we have found that we can fit both these challenges comfort-
ably into our existing approach.

1 Summary of Our Acceptance Testing Approach
and Tools

These are presented more fully in our paper from XP2004[1] and to some extent
XP2003[3] as well. This is a short summary of the ideas presented there.

1.1 TextTest: Verification by Textual Differences

We verify program correctness by the simple mechanism of comparing plain text
produced by a program against a previously accepted version of that text - es-
sentially comparing log files with a graphical difference tool like tkdiff. This way,
writing tests never involves writing test code, and plain text is readable, portable
and very easy to change – important aspects when it comes to maintenance of
large test suites.

TextTest[4] essentially assumes a batch program that will perform a task and
produce text files without human intervention, and then exit.

1.2 xUseCase: GUI Usage Simulation with Use Case Recorders

When it comes to testing GUIs, we advocate an agile “record/replay approach”
based around automatically recording and replaying a high level ’domain lan-
guage’ script that models the use case that the test writer is performing with
the GUI in question. This combines the strength of traditional record/replay

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 210–213, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Multithreading and Web Applications 211

approaches (rapid creation of tests, few skills required to create them) with the
strength of data-driven approaches (easily tweaked high-level test representa-
tions). In short, the core assumption is that recording is great but re-recording
is horrible.

This is achieved by providing a GUI library-specific layer that can listen for
every event that the application listens for, and can be told by the application
what the intent behind the event is in the language of the domain. This means
it can record this high-level statement instead of something based on the screen
layout or other GUI mechanics.

Two such libraries currently exist: PyUseCase[5], for the Python library
PyGTK and JUseCase[5], for Java Swing.

2 Testing Multi-threaded Programs

When we replay a test without human intervention, it may well be necessary to
wait for things to happen before proceeding. Otherwise the test will fail because
further use case actions rely on data loaded in a separate thread being present.
In this case a traditional record/replay tool is basically stuck: it knows noth-
ing of application intent and all it can do is ask the test writer to hand-insert
’sleep’ statements into the script after recording it. Needless to say, this is both
inefficient and error-prone.

Our use-case recorders handle this situation by introducing the notion of
an “application event”: the application can simply notify the use-case recorder
when a significant event has occurred that is worth waiting for. At places in the
code where such events occur, the programmer adds calls to xUseCase, which
will then record a “wait for <name of application event>” command. During
replay the replay thread will halt until the application reaches the point where
the application event occurs, i.e., when the use-case recorder is notified of the
event having occurred.

For example, assume we have the following use case script from a Swing App,
using JUseCase:

load movie data into list
select movie Die Hard

Also assume that the first command starts a separate thread that loads a large
amount of data from a database and displays it on the screen. Unless there is
a way of telling the replayer when this has completed, it would perhaps try to
select “Die Hard” before that item was present in the list, causing the simulation
to fail. To solve this, the programmer inserts

ScriptEngine.instance().applicationEvent("data to be loaded");
at the appropriate point in his application. The recorded use case will now

look like this:

load movie data into list
wait for data to be loaded
select movie Die Hard

212 Johan Andersson, Geoff Bache, and Claes Verdoes

In record mode the applicationEvent method just records the “wait for” com-
mand to the script file. In replay mode, the replayer halts replaying on reading
this “wait for” command, and the applicationEvent call then acts as a notifier
to tell it to resume when the data has been loaded.

3 Use-Case Recording for Web Applications

The GUI for a web app is presented in an external application: a web browser.
This means that recording use cases presents new and different challenges.

3.1 Simulating User/Browser Interaction

To obtain scripts at the use case level, we need to approach the application
from the browser side, rather than HTTP level. In this domain a number of web
application testing frameworks exist, e.g., actiWATE, Canoo WebTest, HttpUnit
and HtmlUnit [7]. They are all in some sense browser simulators, allowing the
creation of web page objects that support clicking on links, filling out forms
etc. They mostly expect that tests will be written using a provided Java API,
although Canoo WebTest makes use of XML scripts instead.

3.2 A Simple Browser Based on HtmlUnit

As we already had a use-case recorder for Java Swing (JUseCase), we decided
to take one of the Java frameworks and build a simple web browser on top of it,
plugging it into JUseCase at the same time. It would then be possible to record
and replay use cases for the web application within the browser. Of the available
options, HtmlUnit seemed to be the most browser-like framework that was also
open source, so we decided to build on that and created “WebUseCase”[6]. Aside
from being actively developed and maintained, HtmlUnit can also be configured
to mimic and behave as known browsers like Microsoft Internet Explorer, Mozilla
and Netscape – an important feature when testing web applications from the
browser side.

3.3 Getting Relevant Use Case Descriptions

Having a Swing browser for web apps was one step towards being able to record
and simulate user/GUI interactions, but there was more to do: all components
had to be connected to JUseCase. At a first glance this didn’t seem to be much of
a problem since the GUI only used standard components already supported by
JUseCase – for each link or form component an equivalent component in Swing
could be connected up to JUseCase as discussed previously. That was the easy
part. The hard part was to choose relevant names for the use case commands
connected to the component events.

When the GUI isn’t part of the application code that we want to create use
cases for, how are we to set proper use case command names, i.e., names that

Multithreading and Web Applications 213

tell something about the intent of the application? Since the only connection
between the browser and the web app is a number of HTML pages, that’s where
the use case command names have to come from. So how do we put the use case
command names into an HTML document, without destroying it?

Fortunately, most HTML tags support the ‘title’ attribute which can be
used to define use case command names. This attribute is optional and “offers
advisory information about the element for which it is set” [8]. Using it to set
use case command names thus doesn’t conflict with its intended use.

The title attribute gives the application developer full control over which use
case command names to use at which places, and since the attribute is available
for both links and form controls, it provides a consistent mechanism for defining
use case command names.

4 Conclusion

The acceptance testing approach advocated has shown itself to be versatile and
applicable well outside of the realm of the batch applications where it began.
Use-case recording has proved itself for ’fat client’ multi-threaded GUIs in both
Java and Python, as well as for web applications.

References

1. Andersson, J. and Bache, G.: “The Video Store Revisited Yet Again: Adventures
in GUI Acceptance Testing” in Proceedings of the 5th International Conference
on Extreme Programming and Agile Processes in Software Engineering (XP2004).
Germany, 2004.

2. Verdoes, C.: “Use case recording and simulation : Automating acceptance tests for
GUI applications”. Chalmers University of Technology, Sweden, 2005.

3. Andersson, J., Bache, G. and Sutton, P.: “XP with Acceptance-Test Driven Devel-
opment: A Rewrite Project for a Resource Optimization System” in Proceedings
of the 4th International Conference on Extreme Programming and Agile Processes
in Software Engineering (XP2003). Italy, 2003.

4. TextTest is free and open source. It can be downloaded from
http://sourceforge.net/projects/texttest

5. Both PyUseCase and JUseCase are free and open source. They can be downloaded
from http://sourceforge.net/projects/pyusecase and
http://sourceforge.net/projects/jusecase respectively.

6. WebUseCase will be released as open source pretty soon...
7. The HtmlUnit Java library for automatic simulation and testing of web applications

is open source and can be downloaded at http://htmlunit.sf.net/

8. The HTML 4.01 specification, http://www.w3.org/TR/html4/

Using State Diagrams to Generate Unit Tests
for Object-Oriented Systems

Florentin Ipate1 and Mike Holcombe2

1 IFSoft, Romania
fipate@ifsoft.ro

www.ifsoft.ro
2 Department of Computer Science, University of Sheffield, UK

m.holcombe@dcs.shef.ac.uk

Abstract. Traditionally, finite state machines and their extensions, such
as stream X-machines, have been used for modelling and testing of graph-
ical user interfaces (GUI) and for acceptance testing. This paper shows
how these testing techniques can be successfully extended to unit test
generation for object-oriented systems and integrated into Extreme Pro-
gramming in a simple and designer-friendly way. The approach has been
used by MSc students in Computer Science at the Pitesti University to
write JUnit tests for XP projects and the effectiveness of these tests
has been compared with that of tests produced using ad-hoc and tra-
ditional functional methods. The conclusions show that over 90 % of
the faults found by other methods have also been found by the stream
X-machine based approach, whereas less than 75 % (in many instances
less than half) of the faults uncovered by the stream X-machine based
testing have been found by other methods. As the finite state machine
based test generation has been automated, the time spent using the two
testing strategies was roughly equal.

Keywords: unit testing, functional testing, state diagrams, finite state
machines, stream X-machines

1 A Simple Example

Suppose that we are building a simple computer system for a library. We might
identify a number of stories such as the following: Borrow book (a book can
be borrowed if the customer does not have the maximum permitted number of
books on loan), Return book, Reserve book (a book that is currently on loan
can be reserved) Extend loan (the loan can be extended if the borrowed book
has not been reserved by another customer).

From the above user stories we can identify two obvious class candidates,
Book and Customer, and their operations; for Book, these are borrow, return,
extend, reserve. Three states of a book can also be identified: Available,
Borrowed, Reserved. Having identified the operations and the states, we can
now proceed to drawing a state diagram for the Book class. As it turns out, the
state diagram (Fig. 1) has actually 4 states, since, once a book has been reserved,

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 214–217, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using State Diagrams to Generate Unit Tests for Object-Oriented Systems 215

it has to be known whether the book is still on loan by the current customer
(Borrowed&Reserved) or has been returned (Reserved) and the new customer
can proceed with the borrowing. Furthermore, there has to be a way of progress-
ing from the Reserved state, so we can decide that the reservation has to be
cancelled before the new customer can borrow the book. If the book is no longer
of interest for the customer who has made the reservation, s/he can just cancel
the reservation, either from the Reserved state or from the Borrowed&Reserved
state. The state diagram in Fig. 1 describes the possible sequences of operations
that the class can perform in correct use, that must be obeyed by any class users
or clients. On the other hand, the class cannot control these users, so it is never
known when an operation will be called. Thus, in order to insure the correctness
of the system, programmers use suitable error handling to deal with incorrect
or unexpected use. This situation can be modelled by adding to the diagram
erroneous transitions to an Error state.

extend

cancel

return

return

reserve

borrow
Available Borrowed

Reserved Borrowed
&Reserved

cancel

Fig. 1. The state diagram for Book

We can now proceed in a similar way with the Customer class and identify
3 potential states: Empty – when the customer has no books on loan, Full
– when the customer has the maximum permitted number of books on loan,
and Partial – when neither of these situations apply. There is, however, an
important difference in comparison with the diagram for Book, since, in this
case, the transitions from the Partial state will be conditioned by predicates.

As classes form associations, it is not sufficient to test them independently
and some testing has to be done for some small groups of classes with high cou-
pling between them. This kind of testing cannot be left until system integration
and has to be performed during the unit testing phase. When an object in a
class A can send messages to an object in a class B, we can use a state diagram
to show the effect of the operations of A on the object in B, i.e. apply these
operations in the states of the class B diagram. Obviously, only those operations
of A that can affect the state of B (a message form A to B is sent as a result
of the operation) need to be considered, the others may be omitted. When the
association between the two classes is bi-directional, two diagrams (one for each

216 Florentin Ipate and Mike Holcombe

direction) will normally be needed. We can safely assume that a Customer ob-
ject will send messages to a Book object, but not the other way around, so the
association between these two classes can be modelled by a single state diagram.

2 Finite State Machine and X-Machine Based Testing

Once we have produced the states diagrams, we can use them to generate test
cases in a rigorous manner and to automate the testing process, by applying
existing finite state machine based strategies. One of the most general approaches
is the W -method [2], that generates sequences of symbols to reach every state in
the diagram, check all the transitions from that state and identify all destination
states to ensure that their counterparts in the implementation are correct.

It is straightforward to apply the W -method to a finite state machine, but
the state diagrams that describe the behaviour of a class or a class association
are not, strictly speaking, finite state machines, as transition labels are not mere
symbols from an abstract alphabet, but have some functionality attached to
them – they can be represented by mathematical functions. This more general
model, in which the labels of the transitions are mathematical functions is called
a stream X-machine [1]. Each such function is driven by some input (operation
name, input parameters), performs some processing on the object data and may
produce some output (output parameters, display messages). Thus, the following
information is associated with each transition label:

– Input: the name of the operation performed, the input parameters (if any)
and their domains.

– Data domain: the domain of the data values for which the operation is
valid.

– New data: the updated data values.
– Output: the output parameters (if any) of the operation and their values

and any other observable outputs. If the state diagram shows the effect of
the operations of a class A in the states of a class B, the object in A will
also be assimilated as input parameter for each operation.

For each diagram, the four components for each label will be identified and the
results will be placed into a table. Each user story will correspond to one or more
rows in this table. The table can then be used to identify the sequence of inputs
(operation names and input parameters) that drives a sequence of transitions so
that each sequence of transition labels generated by the W -method can be trans-
lated into a sequence of program statements and an appropriate test program
can be written. Furthermore, the expected outputs can also be derived from the
table and these can be compared with the outputs produced by the test program.
However, this testing method is only effective if the diagram (stream X-machine)
satisfies some design for test conditions: observability and controllability [1]. In
unit testing, these requirements can be achieved by splitting a transition into
two or more transitions (observability) and by designing special operations to
set up the appropriate context for the conditioned transitions (controllability).

Using State Diagrams to Generate Unit Tests for Object-Oriented Systems 217

3 Conclusions

State diagrams are intuitive and easy to use. They require little formal training
but, at the same time, are rigorous means of describing the behaviour of a class
or a system, since they are based on mathematical models such as finite state ma-
chines and their extensions. State diagrams can help to clarify and refine design
details (in our example, a new method, cancel, that did not came out directly
from the user stories, was identified when the Book class diagram was drawn
up). Finite state machines and stream X-machines provide the basis for rigorous
testing, without any other kind of (semi-) formal specification being necessary,
which is an important advantage in the context of Extreme Programming.

Testing must be automated as much as possible in Extreme Programming and
functional tests themselves are written as computer programs [3]. It is straight-
forward to convert a finite state machine into a computer program and this
process can be easily automated. Furthermore, the process of generating test
sequences form a finite state machine can also be automated and appropriate
tools exist. Obviously, the tester will have to look up in the table which stores
the transition label details and produce appropriate sequences of code state-
ments to drive the sequences of labels that come out of the finite state machine
test generation tool, but, on the other hand, functional tests cannot be fully
automated unless a complete (formal) specification and tools for writing and
executing it are available, which is not the case in Extreme Programming, nor
in most development approaches in the core software industry.

As the method thoroughly tests a class or a system, it usually produces a
larger number of test cases in comparison with traditional functional methods,
such as such as category-partition. However, the test cases produced are easier
to run in comparison with these methods, since there is no need to explicitly
establish the context (the state) before actually running the tests (the test se-
quences reach the state and identify it before checking all the transitions that
come out from it).

The key benefit of the stream X-machine based testing method [1] is that
sets generated fully tests the class, as all possible transitions, including the error
handling part of the operations, will be checked in every possible context (state
of the diagram). Furthermore, the method does not only test the operations
individually, it also tests their coordination within the class.

References

1. Holcombe, M. and Ipate, F. 1998. Correct Systems: Building a Business Process
Solution. Springer Verlag: Berlin.

2. Ipate, F. and Holcombe M. 1997. An Integration Testing Method That is Proved
to Find all Faults. Intern. J. Computer Math. 63: 159-178.

3. Jeffries, R., Anderson, A., Hendrickson, C. 2000. Extreme programming installed,
Addison-Wesley.

{s.abdullah,j.karn,m.holcombe,a.cowling,m.gheorge}
@dcs.shef.ac.uk

•

•

α α

{a.cowling,j.karn,s.abdullah,m.holcombe}@dcs.shef.ac.uk

{dkolovos,paige,fiona}@cs.york.ac.uk

$a.b
a� b�

b

UC Workbench – A Tool for Writing Use Cases
and Generating Mockups

Jerzy Nawrocki and Łukasz Olek

Poznań University of Technology, Institute of Computing Science,
ul. Piotrowo 3A, 60-965 Poznań, Poland

{Jerzy.Nawrocki,Lukasz.Olek}@cs.put.poznan.pl

Abstract. Agile methodologies are based on effective communication
with the customer. The ideal case is XP’s on-site customer. Unfortu-
nately, in practice customer representatives are too busy to work with
the development team all the time. Moreover, frequently there are many
of them and each representative has only partial domain knowledge. To
cope with this we introduced to our projects a proxy-customer role re-
sembling RUP’s Analyst and we equipped him with a tool, called UC
Workbench, that supports the communication with the customer repre-
sentatives and the developers. Analyst collects user stories from customer
representatives and ‘translates’ them into use cases. UC Workbench con-
tains among other things a use-case editor and a generator of mockups (a
mockup generated by UC Workbench animates use-cases and illustrates
them with screen designs).

1 Introduction

Many agile methodologies use informal stories for requirements description [3].
Perhaps the most popular are XP’s user stories [2] [5]. An interesting alterna-
tive to them are use cases invented by Ivar Jacobson [7] and incorporated into
Rational Unified Process. They provide “a semiformal framework for structur-
ing the stories” [1]. Although they are more formal than user stories, they are
not contradictory with the agile approach to software development. There are
some agile methodologies that use written requirements or permit them (e.g. the
Crystal methodologies [4], DSDM [14] or Scrum [13]). For people applying those
methodologies, use cases can be very useful. As Craig Larman put it: “when
written functional requirements are needed, consider use cases” [9].

Use-cases engineering comprises editing the use cases (e.g. inserting a step
can require re-numbering all the subsequent steps and extensions associated with
them – that could be done automatically) and generating mockups that would
animate the use cases (that would support customer-developers communication),
and preparing effort calculators based on Use-Case Points [11] and adjusted to
the current set of use cases (that could be a valuable tool supporting XP’s
Planning Game or backlog’s effort estimation in Scrum). Unfortunately, there is
no tool offering that range of functionality. The only thing we have found was a
use-case editor, called CaseComplete, offered by Serlio Software [16].

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 230–234, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

UC Workbench – A Tool for Writing Use Cases and Generating Mockups 231

The aim of the paper is to describe our approach to use-case engineering. It
is based on a tool called UC Workbench (Use Case Workbench) developed at the
Poznan University of Technology. It is a use-case editor combined with a mockups
generator and an effort-calculators generator. It is important for an agile team
that after changing some use cases a new mockup and updated effort calculators
are obtained ‘at the press of a button’. UC Workbench has been successfully used
at the university’s Software Development Studio and in a commercial project run
by PB Polsoft, a medium size software company with headquarters in Poznan.
In the paper we focus on the language for use-cases description (Sec. 2.), and
generation of mockups (Sec. 3.). Other functionality provided by the tool includes
automatic inspections and support for effort estimation.

2 FUSE: A Language for Use-Cases Description

Use cases collected by an analyst are edited with the help of UC Editor, a part
of UC Workbench. The editor uses FUSE (Formal USE cases) language. It is a
simple language formalizing structure of use-cases description to allow generating
of mockups and effort calculators (actor descriptions and steps within the use
cases are expressed in a natural language).

FUSE is based on use-case patterns collected by Adolph and his colleagues [1].
Use cases are accompanied with actor descriptions (that is adviced by the Clear-
CastOfCharacters pattern). FUSE allows for two forms of use cases (the Multi-
pleForms pattern): casual and formal. The former has no steps, just plain text
and resembles XP’s user stories. The latter corresponds to the ScenarioPlusFrag-
ments pattern: the description consists of a main scenario split into a number of
steps and extensions (that form is very popular – see e.g. [6]). When applying
the breadth-before-depth strategy and spiral development, first the casual form
is used and at the next cycle some use cases are refined and written down using
the formal form.

To make formal descriptions of use cases more precise and readable we have
decided to introduce the Either-Or construct to FUSE. Moreover, for the sake of
readability FUSE allows nested steps that are especially helpful when combined
with Either-Or.

2.1 Either-Or

Sometimes one needs nondeterministic choice between alternative steps. As-
sume, for instance, that someone has to describe how to buy books in an Internet-
based bookstore. A customer can either add a book to the cart or remove one
from it.

Putting those two steps in a sequence

1. Customer adds a book to the cart.
2. Customer removes a book from the cart.

is not correct, as it suggests that one has always to remove a book adding one
to the cart. A remedy could be to add an extension like the following one

232 Jerzy Nawrocki and Łukasz Olek

2a. Customer does not want to remove a book from the cart.
2a1. Customer skips the step.

to each of the above steps. Unfortunately, that would clutter the description and
other really important extensions would be less visible.

To solve the problem we have decided to introduce the Either-Or construct
to the formal form of use cases. Using it one could describe customer’s options
in the following way:
1. Either: Customer adds a book to the cart.
2. Or: Customer removes a book from the cart.

One can argue that the Either-Or construct can be difficult for some end-users
to understand. In the case of UC Workbench it should not be a problem, as
the use cases are accompanied with an automatically generated mockup which
visualizes the control flow by animating of use cases.

2.2 Nested Steps
Sometimes a step can be decomposed into 2 or 3 other steps. Then it can be
convenient to have the “substeps” shown directly in the upper level use case
(according to the LeveledSteps pattern a scenario should contain from 3 to 9
steps). For instance, assume that adding a book to the cart consists of the
following “substeps”:
1. Customer selects a book.
2. System shows new value of the cart.

Then buying books could be described in FUSE in the following way (use-case
header and extensions have been omitted):
1. Either: Customer adds a book to the cart.

1.1. Customer selects a book.
1.2. System shows new value of the cart.

2. Or: Customer removes a book from the cart.

Again, end-user will be supported with a mockup helping him to understand the
control flow, but if the analyst thinks it is not enough she can always choose not
to use new constructs.

An example of use case written in FUSE is presented below:
Main scenario:

1. Customer opens main page of a Bookshop.
2. System presents a list of categories and all new positions.
3. Customer is composing his order:
3.1. Either: Customer adds a book to his cart:
3.1.1. Customer chooses a desired book.
3.1.2. System shows the book details.
3.1.3. Customer adds the book to cart.

3.2. Or: Customer removes a book from the cart.
4. Customer finalizes the order.

Extensions:
4.A. The cart is empty.
4.A.1. System shows appropriate message and returns to step 3.

UC Workbench – A Tool for Writing Use Cases and Generating Mockups 233

3 Generating of Mockups

There are two kinds of prototypes [10]: throwaway prototypes (mockups) and
evolutionary ones. The latter are core of every agile methodology. The former
could be used to support customer-developers communication about require-
ments but their development had to be very cheap and very fast.

The mockups generated by UC Workbench are simple but effective. They
focus on presenting functionality. They combine use cases (i.e. behavioural de-
scription) with screen designs associated with them (that complies with the
Adornments pattern [1]). A generated mockup is based on a web browser and it
consists of two frames (see Fig. 1):
– the scenario window presents the currently animated use cases (it is the left

frame in Fig. 1) and the current step is shown in bold;
– the screen window shows the screen design associated with the current step

(it is the right frame in Fig. 1).

Fig. 1. A Mockup Screen

To generate a mockup the analyst has to associate with use-case steps names
of files containing screen designs. The fidelity levels of screen designs are up to the
analyst (an interesting discussion about fidelity levels can be found in [12], [15],
[8]). The screen design shown in Fig. 1 is at the low fidelity level and it has been
created with a tablet connected to PC. After decorating ‘difficult’ use-cases with
screen designs one can generate a mockup “at the press of a button”. Using UC
Workbench one can produce a mockup (i.e. re-write use cases and adorn them
with screen designs) within a few hours – that goes well with agile methodologies
and can really support customer-developers communication, especially if there
is a danger that the requirements are ambiguous or contradictory.

234 Jerzy Nawrocki and Łukasz Olek

4 Conclusions

UC Workbench presented in the paper supports editing use cases (we were sup-
prized that Rational Requisite Pro much more supports ‘traditional’ require-
ments than use cases) and generates mockups that animate use cases. What is
important for agile developers a mockup can be obtained automatically, so it
is always consistent with changing requirements. UC Workbench supports also
automatic inspections, effort estimation based on Use Case Points [11] and gen-
eration of the software requirements document from a set of use cases.

Acknowledgements. We would like to thank Grzegorz Leopold and Piotr
Godek from PB Polsoft – their bravity allowed us to get a feedback from indus-
try and helped us to improve the tool. This work has been financially supported
by the State Committee for Scientific Research as a research grant 4 T11F 001
23 (years 2002-2005).

References

1. Adolph S., Bramble P., Cockburn A., Pols A.: Patterns for Effective Use Cases.
Addison-Wesley (2002)

2. Beck, K.: Extreme Programming Explained. Embrace Change. Addison-Wesley,
Boston, 2000

3. Boehm, B., Turner, R: Balancing Agility and Discipline. A Guide for the Perplexed.
Addison-Wesley, Boston, 2004

4. Cockburn, A.: Agile Software Development. Addison-Wesley, Boston, 2002.
5. Cohn, M.: User Stories Applied. Addison-Wesley, Boston, 2004.
6. Fowler, M., Scott, K.: UML Distilled. Addison-Wesley, Boston, 2000.
7. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Soft-

ware Engineering: A Use Case Driven Approach. Addison-Wesley, Reading MA,
1992.

8. Landay J.A.: SILK: Sketching Interfaces Like Crazy IEEE Computer-Human In-
teraction (April 13-18, 1996)

9. Larman, C.: Agile And Iterative Development. A Manager’s Guide. Addison-
Wesley, Boston, 2004.

10. Pressman, R.: Software Engineering. A Practitioner’s Approach. McGrow-Hill,
New York, 1997.

11. Ribu K.: Estimating Object-Oriented Software Projects with Use Cases Master of
Science Thesis, University of Oslo 2001

12. Rittig M.: Prototyping for Tiny Fingers. Communications of the ACM, April
1994/Vol. 37, No. 4 p. 21-27

13. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond,
2004.

14. Stapleton, J.: DSDM. Business Focused Development. Addison-Wesley, London,
2003.

15. Walker M., Takayama L., Landay J.A.: High-fidelity or Low-fidelity, Paper or Com-
puter? Choosing Attributes When Testing Web Prototypes. Proceedings of the
Human Factors and Ergonomics Society 46th Annual Meeting: HFES2002. pp.
661-665

16. http://www.serliosoft.com/casecomplete/

ben.aveling@alcatel.com.au

jm@ee.ualberta.ca

{ageras,smithmr}@ucalgary.ca

{Alberto.Sillitti,Giancarlo.Succi}@unibz.it

•

•

+
−=γ

γ
γ γ

γ

= γγ

γ

= γ

γ

=
γ

γ =

γ

Writing Coherent User Stories
with Tool Support

Micha�l Śmia�lek1,2, Jacek Bojarski1,
Wiktor Nowakowski1, and Tomasz Straszak1

1 Warsaw University of Technology, Warsaw, Poland
2 Infovide S.A., Warsaw, Poland

smialek@iem.pw.edu.pl

Abstract. Writing good user stories for software systems seems to be
a hard task. Story writers often tend to mix real stories (sequences of
events) with descriptions of the domain (notion definitions). This often
leads to inconsistencies and confusion in communication between the
users and the developers. This paper proposes a tool that could sup-
port writing coherent user stories. The tool clearly separates the domain
notion definitions from the actual stories. This leads to a consistent re-
quirements model that is more readable by the users and also easier to
implement by the developers.

1 Introduction

User stories [1] can be compared to novels in literature. Good novels communi-
cate stories treated as sequences of events, and place these stories in a well de-
scribed environment. Unfortunately, writing stories that describe requirements
for software systems seems to be equally hard as writing good novels. However,
unlike for writing novels, lack of coherence and ambiguities may cause disaster
when developing a system based on such stories.

Finding inconsistencies in a set of several tenths or hundreds of stories is quite
a hard task. Especially, when these stories are written by different people and at
different times. It seems that some kind of a tool support for the task of writing
stories could significantly help in keeping coherence of requirements. This tool
should have two major characteristics: it should enable keeping coherent style
(possibly by different writers) and it should prevent from introducing conflicts
between different stories.

2 The Concept

Most inconsistencies in requirements are caused by contradictory definitions of
terms in different stories. To eliminate the source of such inconsistencies we need
to have a single repository of notions (a vocabulary) that can be used in various
stories. The stories could then use definitions already found in the repository
and just concentrate on the actual sequence of events (Fig. 1).

Another source of confusion lies in the interpretation of story sentences. It
can be argued that the story can be unambiguously presented with very simple

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 247–250, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

248 Micha�l Śmia�lek et al.

using notions in stories
consistently

separating stories
from notions

1. Clerk wants to see the basic account databasic account data.
2. System shows an account query formaccount query form.
3. Clerk fills-in the account query formaccount query form.
4. System shows an account listaccount list according to
the account queryaccount query.
5. Clerk picks an accountaccount from the account listaccount list.
6. System shows the basic account databasic account data.

Account

Account list

Account query
form

Account query

Basic account
data

Fig. 1. Story with a separate notion vocabulary

sentences containing just a subject, a verb and one or two objects (SVO[O] - see
[2]). This gives us very consistent style, and promotes discovery of new notions.
The story writers are obviously somewhat constrained with such notation, how-
ever, practice shows that such self-constraint leverages introduction of notions
that would not be discovered otherwise (Fig. 2).

3 The Tool

The basic characteristic of a scenario construction tool would be to promote
consistent style with proper SVO sentences and link sentence elements with the
notions in the vocabulary [3] (see Fig. 3). When writing a story, the story writer
would have instant access to notions grouped by subject. All the notions could be
easily introduced as sentence objects (or subjects or verbs). When a particular

Basic account
data

account_name:
account_number:
status:
balance: int

1. Clerk wants to open an account.
2. System shows an account opening form.
3. Clerk fills-in the account opening form.
4. System creates an account.

1. Clerk wants to open an accountaccount.
2. System shows an account opening formaccount opening form.
3. Clerk fills-in the account opening formaccount opening form.
4. System creates an accountaccount.1. Clerk wants to see the basic account data.

2. System shows an account query form.
3. Clerk fills-in the account query form.
4. System shows an account list according to the
account query.
5. Clerk picks an account from the account list.
6. System shows the basic account data.

1. Clerk wants to see the basic account databasic account data.
2. System shows an account query formaccount query form.
3. Clerk fills-in the account query formaccount query form.
4. System shows an account listaccount list according to the
account queryaccount query.
5. Clerk picks an accountaccount from the account listaccount list.
6. System shows the basic account databasic account data.

The story starts when the clerk chooses to see the
basic data of the account. Then, the system
shows a form enabling entry of a query for
accounts. The form has several fields (…) that are
then filled-in by the clerk. After processing the form,
the system shows a list containing several accounts
that conform to the above query. Next, the clerk
chooses one of the accounts. The system finally
shows general information about the account,
i.e. the account name, the account number and the
current account status with balance.

The story starts when the clerk chooses to see the
basic data of the accountbasic data of the account. Then, the system
shows a form enabling entry of a query for
accounts. The form has several fields (…) that are
then filled-in by the clerk. After processing the form,
the system shows a list containing several accounts
that conform to the above query. Next, the clerk
chooses one of the accounts. The system finally
shows general information about the accountgeneral information about the account,
i.e. the account name, the account number and the
current account status with balance.

Account

Account list

Account
opening form

Account query

Account query
form

Basic account
data

Money transfer

Money transfer
form

Initial story with inconsistent style

1. Clerk wants to make a money transfer.
2. System shows a money transfer form.
3. Clerk fills-in the money transfer form.
4. System makes the money transfer.

1. Clerk wants to make a money transfermoney transfer.
2. System shows a money transfer formmoney transfer form.
3. Clerk fills-in the money transfer formmoney transfer form.
4. System makes the money transfermoney transfer.discovering

notions

applying
consistent style

Fig. 2. Story with a separate notion vocabulary

Writing Coherent User Stories with Tool Support 249

1. Clerk wants to see the basic account data.
2. System shows an account query form.
3. Clerk fills-in the account query form.
4. System shows an account list according to the
account query.
5. Clerk picks an account from the account list.
6. System shows the basic account data.

1. Clerk wants to see the basic account databasic account data.
2. System shows an account query formaccount query form.
3. Clerk fills-in the account query formaccount query form.
4. System shows an account listaccount list according to the
account queryaccount query.
5. Clerk picks an accountaccount from the account listaccount list.
6. System shows the basic account databasic account data.

Account

Account list

Account
opening form

Account query

Account query
form

Basic account
data

Money transfer

Money transfer
form

supporting
the visual vocabulary

supporting
the SVO[O] style

Fig. 3. Supporting consistent stories with notions in a dedicated tool

generating
UML models
transformable

to code

class AccountList{
int pick(){
get(i);
return i;

}
void show{
for
(i=1; i<=num; i++)

acc[i].show();
}

}

class AccountList{
int pick(){
get(i);
return i;

}
void show{
for
(i=1; i<=num; i++)

acc[i].show();
}

}

Fig. 4. Generating a UML class model for direct transformation into code

notion used by the writer is not present in the vocabulary - it can be defined
immediately. An important feature when defining notions is the possibility to
introduce synonyms and forms. This allows for building different vocabularies
for different groups of users.

A very important feature of the story construction tool is the possibility to
generate visual models (see Fig. 4). This gives the software developers means
to synchronize their efforts with the actual requirements. The tool makes this
possible by allowing to create visual UML [4] diagrams in parallel with writing
notions and story sentences. These diagrams can be directly translated into code
or transformed into more platform specific design models.

4 The Tool and the Process

As every tool, the current story-writing tool has to used in the development
process with care. Figure 5 illustrates possible usage of the tool in a lightweight,
iterative process based on XP [5] and FDD [6]. It has to be noted, that initial
stories coming from the user are created without tool support. Also, the initial
story-writing session can be best organized with very simple “tools” like index
cards. The interactive session should produce a set of index cards with clarified

250 Micha�l Śmia�lek et al.

clarified
stories

initial
stories

notions
class
model

sequence
model

code

keeping
consistent
style

supporting
story-based
development

Fig. 5. Applying SVO story tool support in an agile process

stories and notions (see Fig. 5). Only then, when development begins, the stories
and notions can be introduced into a repository organized around the presented
tool. The tool can verify the results of the interactive session, allowing for their
coherence and synchronization with the results of previous iterations. This leads
to further clarification and interactions with the users.

During development, the tool facilitates engineering tasks by binding them
better with the stories to be implemented. It has to be stresses, that the proposed
UML class model generator does not suppress human effort in structuring code,
but only supports it to some extent. The models that come from the tool can
only initiate the activities associated with construction of the final system.

5 Conclusions

The proposed tool can significantly improve consistency of requirements written
using stories. The tool allows the story writers to apply uniform style, and to
synchronize notion definitions between different stories. Very simple notation for
stories and a separate notion repository gives additional impulse for creativity -
leverages finding new notions that can then be used as candidates for classes in
code. At the same time, the tool can effectively promote a lightweight approach
to developing software that is based directly on the user’s needs.

References

1. Cohn, M.: User Stories Applied. Addison-Wesley (2004)
2. Graham, I.: Object-Oriented Methods Principles & Practice. Pearson Education

(2001)
3. Śmia�lek, M.: Profile suite for model transformations on the computation indepen-

dent level. Lecture Notes on Computer Science 3297 (2005) 269–272
4. Fowler, M., Scott, K.: UML Distilled: A Brief Guide to the Standard Object Mod-

eling Language. Addison-Wesley Longman (2000)
5. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley

(2000)
6. Palmer, S.R., Felsing, J.M.: A Practical Guide to Feature-Driven Development.

Prentice Hall PTR (2002)

frank.keenan@dkit.ie

dw.bustard@ulster.ac.uk

M.Holcombe@dcs.shef.ac.uk, acp03bk@shef.ac.uk

−
−
−

•

•

•

•

•

−
−
−

−

Ernest.Mnkandla@infotech.monash.edu.au

b.dwolatzky@ee.wits.ac.za

smlotshwa@yahoo.com

•
•

•

•

•

•

•

kscotland@twowaytv.co.uk

•
•
•
•

•

•

•

•

pvc@nayima.be

Olivier.Lafontan@egg.com

ivan@thoughtworks.com

vera.peeters@tryx.com

cases, and discuss the principles behind the actions. The goal is to help the au-
dience to be more effective in response to their "leadership moments" as they
apply XP.

code and create an effective organisation, and some of the ideas in XP contradict
conventional wisdom about software development. The growing number of books
offer guidance but an outside, human perspective can also be helpful.

the real issues that practitioners face in their day-to-day workw and offer advice and
experience. The members of the panel are either managers who have applied XP, or
consultants who have converted many different organisations to XP.

outline describing your situation and the difficulties you would like the panel to dis-
cuss. We will pick a representative selection before the session and work with the
authors to clarify the issues for presentation. During the session, we will present each
case and the panellists will discuss ideas, possible solutions, and principles with the
author.

Agile Project Management

Ken Schwaber

Scrum Alliance
ken.schwaber@controlchaos.com

1 Description

We can read about Agile processes in books and articles. However, the manage-
ment of projects using an Agile process represents a significant shift for both the
project team(s) and the organization as a whole. The shift internal to the team
occurs as the project manager teaches the customer how to drive the project it-
eration by iteration to maximize ROI and minimize risk, with no intermediaries
between the customer and team. The other internal shift happens as the team
realizes that self-management means exactly that – the team has to figure out
how to mane its own work cross-functionally. These are trivial words, but the re-
alization of their impact on career paths, relationships, and performance reviews
is profound. Even more difficult is helping the team and organization overcome
the bad habits they had acquired prior to implementing the Agile process – wa-
terfall thinking, command-and-control management, and abusive relationships.
Ken Schwaber, the instructor, has addressed these problems in numerous orga-
nizations and will share his insights with the attendees, along with a framework
for thinking about the new role of a project manager. Since it is easy to think
one knows what Agile processes are like without knowing what they really feel
like, two case studies are used to help the class experience the differences.

2 Instructor

Ken Schwaber has addressed these problems in numerous organizations and will
share his insights with the attendees, along with a framework for thinking about
the new role of a project manager. Ken has been a software professional for
thirty years, and was a signatory to the Agile Manifesto, founder and chairman
of the board of the Agile Alliance, and founder of the Scrum Alliance. He is one
of the co-developers of the Scrum process.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, p. 277, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Expressing Business Rules

Rick Mugridge

University of Auckland, New Zealand, and Rimu Research Ltd
r.mugridge@auckland.ac.nz

Abstract. Learn how to express business rules as storytests [1], with a
focus on expressing the business domain with clarity and brevity.
Writing storytests (Customer tests) is usually complicated by several
factors: The business domain needs to be understood, and often needs to
be clarified. Storytests need to evolve to help this understanding evolve.
Emphasis is often placed too early on the testing aspects, rather than
on expressing the business domain as clearly as possible. The storytests
often make premature commitments to details of the application being
developed, or are not written until those details are known.
This tutorial will give participants experience in expressing business rules
well as storytests. We’ll see that such storytests evolve as the whole
team’s understanding of the business needs and the system evolve.

1 Audience and Benefits of Attending

Audience: Customers, business analysts, project managers, testers, program-
mers.

Benefit: Learn how to express storytests with clarity and see the benefits
of this. Avoid the pitfalls that many find when writing such storytests. Learn
how to focus on understanding and communicating the domain, formulating a
ubiquitous language [2] in the process. Learn how to use concrete examples to
specify calculation and workflow business rules in that language.

This is suitable for those with little experience in storytests, right through
to those who want to refine and advance their techniques. It is as relevant to
programmers as it is to others in a project team.

2 Content Order and Process

After introducing the main ideas, participants will work in small groups on a
series of exercises. These exercises involve examples and focus on specific prac-
tices.

Process:

– Introduction
– Main Ideas: expressing business rules (calculation and workflow) through

examples in Fit [3, 4, 5, 6]. Evolving a ubiquitous language. Smells and
refactorings.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 278–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Expressing Business Rules 279

– First exercises, with guidance. Small groups will tackle focussed exercises
that clarify approaches and smells in expressing business rules as storytests.

– Retrospective on experience with exercises. Abstracting and generalising
from those exercises.

– Second exercises. Groups will tackle bigger, more realistic exercises with
issues that are tangled together. There will be less upfront guidance.

– Retrospective on range of experiences on the exercises.
– Open questions.
– Conclusions.

3 Presenter Resume

Rick Mugridge is the author, with Ward Cunningham, of Fit for Developing
Software, Prentice-Hall, June 2005. He developed the FitLibrary as he explored
ways of expressing business rules well under change. He is an experienced soft-
ware developer and a business analyst, and has been teaching, coaching and
researching into agile software development for some years. He ran tutorials on
Fit at XP2004, ADC2004 and XPAU2004.

References

1. Storytest and Storytest Driven Development were coined by Joshua Kerievsky,
http://www.industrialxp.org.

2. Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software,
Addison Wesley, 2004.

3. Rick Mugridge and Ward Cunningham, Fit for Developing Software: Framework for
Integrated Tests, Prentice-Hall, 2005.

4. Fit, http://fit.c2.com.
5. FitNesse, http://www.fitnesse.org.
6. FitLibrary, https://sourceforge.net/projects/fitlibrary.

dlarsen@futureworksconsulting.com

Test-Driven User Interfaces

Charlie Poole

Poole Consulting L.L.C.
charlie@pooleconsulting.com

Abstract. Learn techniques for Test-Driven Development of user inter-
faces.

1 Description

Certain kinds of code have a reputation of being quite difficult to test. One of the
most frequently cited examples is testing of user interfaces - particularly GUIs.

This tutorial will begin with a quick review of the principles of unit-testing
and test-driven development but will then drill down to the issues surrounding
user interface testing. We’ll look at design issues, identification of what needs
to be tested, how test-driven development can be applied to the UI and specific
testing techniques for GUIs.

The tutorial will include both presentation and hands on exercises. Partici-
pants are encouraged to bring laptops for use in the exercises. We will arrange
pairing for those without a laptop. Class examples will be presented in C# and
Java, but the exercises may be done in other languages if desired.

Duration

Three hours (half day)

1.1 Audience

This tutorial is aimed at programmers and project leaders who want to apply
Test-Driven Development to the user interface. This includes both those with
significant TDD experience, who need to develop testable user interfaces, and
those who are just adopting TDD.

1.2 Outline

Topics covered will include

– A brief review of unit testing practices and test-first development, and of
the facilities of standard unit-testing frameworks, to get us all on the same
page.

– A series of motivating examples showing why UI testing seems to be difficult.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 285–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

286 Charlie Poole

– Demonstration of TDD for a simple user interface
– General enabling techniques for difficult test situations

• Design patterns
• Use of Mock Objects
• Specialized testing frameworks

– Specifics for testing user interface code
• Designing for testability: two principles for good UI separation
• Defining what needs to be tested at the unit level
• Testing events and event handling
• Acceptance testing of user interfaces

– User interface problem-solving exercises

2 Presenter Resume

Charlie Poole has spent more than 30 years as a software developer, designer,
project manager, trainer and coach. He works through his own company, Poole
Consulting, in the US and recently joined Dublin-based Exoftware as a mentor,
in order to work with European clients. He is one of the authors of the NUnit
testing framework for .NET.

Contact Information

– charlie@pooleconsulting.com
– cpoole@exoftware.com
– www.pooleconsulting.com
– www.charliepoole.org

The XP Geography: Mapping Your Next Step,
a Guide to Planning Your Journey

Kent Beck

Three Rivers Institute
kent@threeriversinstitute.org

Summary. We will explore the primary practices of XP in detail using
mind mapping exercises. You will examine your needs and find practices
to address them. We will discuss the change process, how to reach agree-
ment on goals and principles, how to implement new practices and how
to sustain them. You will make a plan to share with your team and set up
incentives for accountability. This tutorial will be interactive and involve
many colored felt pens.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, p. 287, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

laurent@bossavit.com
http://bossavit.com/

egaillot@octo.com

−
−
−

•

•

laurent@bossavit.com
http://bossavit.com/

egaillot@octo.com

−
−
−
−

Rachel@agilexp.com

timBacon@primeeight.co.uk

Exploring Best Practice
for XP Acceptance Testing

Geoff Bache1, Rick Mugridge2, and Brian Swan3

1 Carmen Systems AB, Göteborg, Sweden
geoff.bache@carmensystems.com

2 University of Auckland, New Zealand
r.mugridge@auckland.ac.nz

3 Exoftware, Dublin, Republic of Ireland
bswan@exoftware.com

Abstract. A few years ago, Acceptance Testing was one of the more
poorly understood concepts of XP, with both tools and advice thin on
the ground. This has meant that different people have gone different
ways with it and an overview of knowledge gathered in the process has
been lacking.
The presenters are three such people, each of whom has developed a dif-
ferent tool for acceptance testing: TextTest+xUseCase, Fit+FitLibrary
and Exactor, respectively. We are aware that there are lots of other tools
around, both within the XP community and outside it. The aim of this
workshop is to gather together all this disparate knowledge and start to
work towards a common understanding of ‘best practice’.

1 Intended Participation

We hope that between 15-20 people will participate, though the format is fairly
flexible in terms of numbers attending. Each participant should submit a brief
position paper, which should aim to identify what experiences they have of
Acceptance Testing, both tools and practices. It should especially highlight any
technique they thought particularly helpful, or any problem that they found
difficult to get around. These will be used as potential discussion topics in the
workshop.

2 Audience and Benefits of Attending

Intended audience is anyone with some experience of acceptance testing who
wants to improve what they do and learn from others. This probably includes
developers, testers and customers. The benefits are gaining a broad view of
a complex field without becoming bogged down in too many tool details. As
testing framework designers, we hope to learn more about each other’s tools
and be able to discuss and push the boundaries of what is possible today in
acceptance testing.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 294–295, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Exploring Best Practice for XP Acceptance Testing 295

3 Outline of the Workshop

The workshop will carry on for a half a day, most of which is reserved for small
group discussion.

(1) Presentation. The presenters will aim to give a whirlwind history and
overview of what they know of XP acceptance testing: what techniques have
been developed and what tools there are to implement them.

(2) Discussion. We will take the topics provided by the attendees’ position
papers, and the presenters will add some of their own as they think appropriate.
We will then choose the most interesting ones by some suitably democratic
process.

We will then break into small groups of 5 or 6 people. Each will be headed by a
co-ordinator (preferably the attendee who raised the issue in the first place) who
will stay for the length of the discussion. Participants can move freely between
the groups as they see fit. If the co-ordinator feels the discussion has reached a
natural conclusion, he should try to pick another suitably interesting one from
the list.

(3) Summary. Each co-ordinator will present (5 minutes max) for the whole
group the findings of his small group in discussing the issues raised.

4 Presenter Resumes

Geoff Bache is an experienced software developer and XP coach, working for the
software product company Carmen Systems in Gothenburg, Sweden. He has been
interested in XP acceptance testing since 2000 and working on developing the
approach that has become TextTest and xUseCase since then. He has presented
papers on Acceptance Testing at the XP conferences each year since 2003.

Rick Mugridge teaches and runs projects in agile software development for
software engineering students at the University of Auckland. He has presented
various papers on acceptance testing and other topics at agile conferences over
the last two years, and is on the program committee for XP2005 and Agile 2005.
He ran tutorials on Fit at several agile conferences in 2004, as well as running
several workshops. He is an experienced developer, and consults to industry.
He is the author, with Ward Cunningham, of ”Fit for Developing Software”,
Prentice-Hall, June 2005. He developed the FitLibrary, which extends Fit.

Brian Swan is an Agile mentor with Exoftware, and has extensive experience
in both the technical and the management aspects of Agile. He has successfully
led a variety of teams transitioning to Agile, and trained both developers and
managers in Agile thinking and practice. Brian has specific technical experience
in the financial services and telecoms sectors, and his work with Exoftware and
Agile has taken him to a variety of companies.

Hands-on Domain-Driven Acceptance Testing

Geoff Bache1, Rick Mugridge2, and Brian Swan3

1 Carmen Systems AB, Göteborg, Sweden
geoff.bache@carmensystems.com

2 University of Auckland, New Zealand
r.mugridge@auckland.ac.nz

3 Exoftware, Dublin, Republic of Ireland
bswan@exoftware.com

Abstract. A recent phenomenon in the world of acceptance testing is
tools that emphasize the creation of a domain language in which to
express tests. The benefits of this are twofold: customers and testers
are more likely to get involved in tests expressed in a language they
understand. Also, tests that express intentions rather than mechanics
tend to be much easier to maintain in the long run as they do not break
when circumstantial things change.
The aim of this workshop is to see how tools that support this work in
practice. The presenters have each been involved in the development of
such a tool, TextTest+xUseCase, Fit+FitLibrary and Exactor, respec-
tively, and there is room for attendees to bring their own tools along too.
We aim to learn enough about these tools to compare and contrast them
with each other, as well as with agile approaches that are less focussed
on the creation of a domain language.

1 Intended Participation

We hope that between 15-20 people will participate, though the format is fairly
flexible in terms of numbers attending. Each participant should identify briefly
what experiences they have of Acceptance Testing, particularly of the domain-
driven variety. Participants are encouraged to describe in a few words an ap-
plication that they wish to test (including which operating system it runs on),
install it on a laptop and bring the laptop to the workshop. Participants doing
so will be given priority over those that do not.

If potential participants know of other tools that also support creation of a
domain language for acceptance testing, they can also submit these along with
a brief description. Subject to review, these can then also be tried out in the
workshop.

2 Materials Needed

A laptop is useful but not essential. Should be provided by those that provide
test applications, as above.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 296–298, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hands-on Domain-Driven Acceptance Testing 297

3 Audience and Benefits of Attending

Intended audience is anyone wanting to learn about domain-driven approaches to
acceptance testing. This includes the presenters who want to learn about each
others’ approaches! This probably includes developers, testers and customers.
People without experience in the tools (or even in acceptance testing at all) are
welcome. The benefits are gaining insight into the available tools from those who
designed them without the danger of a ’hard sell’ on a particular tool alone.

4 Outline of the Workshop

The workshop will carry on for a half a day. It is subdivided as follows:
(1) Presentations. Each framework will be briefly presented (15 minutes) by

its designers.
(2) Practice. We will list the candidate applications for testing and choose the

most interesting ones by some suitably democratic means. For each one chosen,
it will be paired as desired with a tool and the application owner and framework
designer will sit down and try to explore what testing that application with that
tool would involve, either writing tests in practice or discussing what is involved
and particular challenges that might be thrown up.

Any attendees who feel sufficiently experienced in using one of the tools can
also help application owners to write tests. Anyone without an application will
be encouraged to take an active part in these sessions, suggest tests, techniques,
offer opinions. There is no requirement that they should remain in one session,
they are free to wanderaround and compare and contrast.

(3) Summarising. The application owners will briefly (max 5 minutes) present
for the whole group what they discovered in attempting to write tests (with
whatever tools they managed to try) for their application.

5 Presenter Resumes

Geoff Bache is an experienced software developer and XP coach, working for the
software product company Carmen Systems in Gothenburg, Sweden. He has been
interested in XP acceptance testing since 2000 and working on developing the
approach that has become TextTest and xUseCase since then. He has presented
papers on Acceptance Testing at the XP conferences each year since 2003.

Rick Mugridge teaches and runs projects in agile software development for
software engineering students at the University of Auckland. He has presented
various papers on acceptance testing and other topics at agile conferences over
the last two years, and is on the program committee for XP2005 and Agile 2005.
He ran tutorials on Fit at several agile conferences in 2004, as well as running
several workshops. He is an experienced developer, and consults to industry.
He is the author, with Ward Cunningham, of “Fit for Developing Software”,
Prentice-Hall, June 2005. He developed the FitLibrary, which extends Fit.

298 Geoff Bache, Rick Mugridge, and Brian Swan

Brian Swan is an Agile mentor with Exoftware, and has extensive experience
in both the technical and the management aspects of Agile. He has successfully
led a variety of teams transitioning to Agile, and trained both developers and
managers in Agile thinking and practice. Brian has specific technical experience
in the financial services and telecoms sectors, and his work with Exoftware and
Agile has taken him to a variety of companies.

−
−
−

−

−
•
•

−

−
−

•

•
•

−

When Teamwork Isn’t Working

Tim Bacon1 and Dave Hoover2

1 Prime Eight Ltd, UK
tBacon@primeEight.co.uk

2 Thoughtworks, USA
dHoover@thoughtworks.com

Abstract. XP is a team game. It relies on teamwork to be successful.
But sometimes our teams don’t work as well as we would like. This
workshop examines real projects from different angles to explore answers
to three powerful questions:
– How can we tell that our team isn’t working?
– Which are the root causes of our problems?
– What actions can we take to improve our teams effectiveness?

1 Audience and Benefits

This workshop will help anyone who has ever worked in a poorly performing
team to learn from their experiences, and to apply that learning in their current
team. Participants will come away with a greater awareness of why teams become
stuck in cycles of ineffective behaviour and how intervention strategies can help
them to become unstuck.

2 Theme and Goals

There is plenty of learning material available for XP teams who wish to improve
skills such as refactoring or testing. But there are fewer sources to turn to when
it comes to improving important interpersonal skills such as collaboration and
communication. Teams can be at a loss on how to proceed when problems surface
in these areas, and their effectiveness becomes more and more compromised the
longer that issues are not addressed.

However research in fields such as social and behavioural psychology is di-
rectly applicable to improving the personal interactions in software teams. This
workshop introduces several techniques from other fields and relates them to real
software development situations where they can provide positive benefits.

3 Content and Process

The workshop uses a series of facilitated story-telling activities to explore con-
textual anecdotes that illustrate the teamwork problems faced by XP teams. At
the start of each activity guidance is provided using examples from the authors’
experience.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 303–304, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

304 Tim Bacon and Dave Hoover

3.1 Timetable

Introduction and group warm-up: 25 minutes
Story-telling, clue detection, and reaction mapping: 50 minutes

– Working in small groups, swap anecdotes about teams that you feel weren’t
working at their full potential

– Identify the clues in the story that demonstrate that teamwork wasn’t work-
ing

– Map the reactions of the people in the team to the clues in the story

Exploration: 45 minutes

– Look again at the clues in the stories and dig into their possible causes
– For each cause, suggest actions that might address the root of the problem
– Select an action that is likely to have the most benefit without causing harm

Sharing the insights: 40 minutes

– One person in the group stays with the outputs to explain them to visitors
– Other members visits other groups to see their outputs
– Roles swap so that all group members have the chance to visit and be visited

Wrap up & appreciations: 20 minutes

Time required 3 hours, excluding breaks

3.2 Participants

The number of participants is limited to 20. Registration is required in advance.
Participants should prepare for the workshop by selecting teamwork stories to
share and explore with others.

3.3 Materials

At least four flipcharts plus coloured marker pens, sticky tape, wall space, and
chairs and tables that can be rearranged to suit various small group sizes.

4 Presenters

Tim Bacon is a self-confessed “people person”. He is a passionate advocate
of Agile processes, software craftsmanship, and test-driven development. Tim
has been a public speaker for a number of years and is currently working as an
independent coach and consultant.
Dave Hoover has been developing software for 15 minutes. He used to have a
respectable job as a family therapist. Dave still wonders how he got here.

david.putman@centaur.co.uk
http://www.centaur.co.uk

david.hussman@sgfco.com
http://www.sgfco.com

Vera.Peeters@tryx.com

pl.schrier@tricat.nl

awills@microsoft.com
http://blogs.msdn.com/alan_cameron_wills/

stevek@metacase.com
http://www.metacase.com/blogs/stevek/

•
−
−
−

•
−

−
−
−

•
−
−

•
−
−

•
−
−

•
−
−

•
−
−

•
−
−
−

•
•
•

•
•
•
•
•
•

•
−
−

•
•

−

•
•
•
•

Ernest.Mnkandla@infotech.monash.edu.au

Exploring XP’s Efficacy
in a Distributed Software Development Team�

Alessandra Cau

DIEE, Universitá di Cagliari
alessandra.cau@diee.unica.it

http://agile.diee.unica.it

Abstract. Since the first edition of Beck’s book [1], the Extreme Pro-
gramming (XP) has attracted attention from academia and industry,
and its values, principles and practices are becoming increasingly popu-
lar. Strong interest in the software engineering community has generated
substantial literature and debate over Extreme Programming. However,
current research on the applicability and effectiveness of Extreme Pro-
gramming is still very scarce and researchers and practitioners need to
assess concretely XP’s advantages and drawbacks. One disadvantage,
which has been noted, is that Extreme Programming is more effective
for small to medium size projects with co-located team. Despite such
observation, Beck asserts that XP can work with teams of any size and
also multi-site [2]. The main goal of this research is to evaluate the effec-
tiveness of Extreme Programming, when the size of development team
is large and distributed.

There are two different approaches to investigate the applicability and
effectiveness of a software method: empirical studies and simulation pro-
cess modeling. These approaches are usually applied separately, but there
are many interdependencies between simulation and empirical research.
On the one hand simulation model generalizes empirical studies and pro-
vides a framework for the evaluation of empirical models. On the other
hand, empirical studies provide the necessary fundament for simulation
models because through empirical studies it is possible to collect real
data to validate the simulation model. In the present research these two
approaches are combined.

My research is grounded on the following steps:

1. Understand if XP values are suitable to multi-site development as
they are for co-located teams. Analyze how to apply XP practices
for distributed and large team and seek which among XP principles
will become more important.

� This work was supported by MAPS (Agile Methodologies for Software Produc-
tion) research project, contract/grant sponsor: FIRB research fund of MIUR, con-
tract/grant number: RBNE01JRK8.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 317–318, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

318 Alessandra Cau

2. Evaluate the applicability and efficiency of Extreme programming
for large and multi-site projects using:
– XP-Evaluation Framework (XP-EF). It is an ontology-based

benchmark which defines the metrics that must be collected for
each case study and to assess the efficacy of XP [3]. The XP-EF
has been used to structure several XP case studies. The XP-EF
will be updated to new XP.

– Discrete Event Simulation Model. My research group and I have
developed a simulation model to evaluate the applicability and
effectiveness of XP process, and the effects of some of its indi-
vidual practices.

3. Validate results. My research will be validated on a real academic
case study. This project [4] involves almost 30 undergraduates stu-
dents, who work as a distributed team in an open source project
using some agile practices.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(1999)

2. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change- Second
Edition. Addison-Wesley (2004)

3. Williams, L., Layman, L., Kreb, W.: Extreme Programming Evaluation Frame-
work for Object-Oriented Languages–Version 1.4. North Carolina State University,
Department of Computer Science, TR-2004-18 (2004)

4. MAD: Methodology agile distribuited. (http://www.unica.it/concas/MAD/)

Agile Methods for Embedded Systems

Dirk Wilking

Chair for Computer Science XI,
RWTH Aachen University

Abstract. The main goal to be answered by this Ph.D. thesis is whether
there is a potential for a successful and powerful application of agile
methods and related techniques to embedded systems development or
not (cf. [2]). Regarding the special context of embedded system, there are
some aspects to be mentioned as stated in [3]. These include the function
oriented development which lead to early testing of the system, the use
of target-processor simulation and the problem of hardware software co-
design.
The first problem being addressed is the evaluation of well known sub-
techniques like refactoring, TDD, fast development cycles, short design
horizon, or similar methods in the context of embedded systems. A com-
plementary approach consists of the elaboration of underlying root causes
which make agile methods appear as a sound alternative to classic tech-
niques. For example assumptions like source code degrading over time,
non-costumer oriented development, overly complex systems, and wrong
development focus could be checked. A possible subdivision of the causes
can be done by distinguishing effects that are generated by agile meth-
ods and effects that typically exist in embedded system engineering. This
can be regarded as an alternative upside down procedure which will more
likely yield a justification for agile methods in embedded system devel-
opment. Finding a causation with an appropriate prioritization appears
more challenging and thus will be used only to verify techniques which
have a strong effect.
The first step toward an assessment of agile methods has been started
by executing a study during a lab course which is guided by the ideas
described in [1]. Here, the students are divided into a planning group and
an agile group, each developing a pre-crash system based on ultrasonic
sensors. The two data collection mechanisms are a biweekly survey and
a time recording log. The underlying aim is to show the influence of the
planning horizon on embedded system development. This approach al-
ready sketches the main validation technique, which will be quantitative
and composed of case studies and experiments. In addition, a case study
with a high degree of variable control as proposed by [4] will be executed
in order to guide the evaluation process to the most promising aspects
of agile methods for embedded system development.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 319–320, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

320 Dirk Wilking

References

1. Jeffrey Carver, Letizia Jaccheri, Sandro Morasca, and Forrest Shull. Using empirical
studies during software courses. In R. Conradi and A. I. Wang, editors, ESERNET
2001-2003, LNCS 2765, 2003.

2. Peter Manhart and Kurt Schneider. Breaking the ice for agile development of
embedded software: An industry experience report. ICSE04, pages 6–14, 2004.

3. Jussi Ronkainen and Pekka Abrahamsson. Software development under stringent
hardware constraints: Do agile methods have a chance? In Michele Marchesi and
Giancarlo Succi, editors, Proceedings of 4th International Conference XP 2003, 2003.

4. Outi Salo and Pekka Abrahamsson. Empirical evaluation of agile software devel-
opment: The controlled case study approach. In F. Bomarius and H. Iida, editors,
PROFES 2004, LNCS 3009, 2004.

Tool Support for the Effective Distribution
of Agile Practice�

(Extended Abstract)

Paul Adams and Cornelia Boldyreff��

Department of Computing and Informatics, University of Lincoln

1 Introduction

Agile methods are quickly gaining notoriety amongst software engineers. Having
been developed over the past decade, they now present a mature, lightweight
alternative to the “classic” approaches to software engineering. Although agile
methods have solved some of the problems of established software engineering
practice, they have created some problems of their own. Most importantly, we
can infer a, potentially problematic, requirement of collocation.

The usefulness of the agile methods is restricted by this requirement of collo-
cation and by the requirement of small development teams. If these requirements
can be loosened then it would be possible to apply agile methods to a larger arena
of software development. This research intends to extend the usefulness of agile
methods by defining a new paradigm for software engineering practice, the “Lib-
eral” paradigm and providing tool support for processes within this paradigm.

2 Tool Support for the “Liberal” Paradigm

This new paradigm is based on the principles of agility combined with the ex-
perience of libre software process distribution. This paradigm offers important
advantages as it will encompass all important features of both agile and libre
software engineering practice in order to facilitate the distribution of effective
agile practice. This paradigm will provide a new set of processes that allow the
distribution of agile practice within the libre software paradigm, but also poten-
tially improve the performance of collocated agile teams.

In this research the intention is to develop a distributed software engineering
support system that will allow the effective distribution of agile practice within
the “Liberal” paradigm.

Tool support for the “Liberal” environment will be provided in the form of
a plug-in for the Eclipse IDE. Existing support for distributed agile practice
is often formed as a näıve, ad hoc composition of existing tools. Environments
such as this can offer effective solutions to this problem but are restricted in that
they have not been specifically developed for this purpose. Unlike other research
� A complete edition of this paper can be found at http://eprints.lincoln.ac.uk/48/

�� Project Supervisor

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 321–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

322 Paul Adams and Cornelia Boldyreff

where process has been the focus, the principle contribution of this research shall
be a tool set for supporting processes within the “Liberal” paradigm. This tool
set must be rich enough to support distributed agile practice, but flexible enough
to allow libre software practitioners the low-level freedoms they are familiar.

There are three types of tool that will be developed within this project:
awareness tools, communication tools and task support tools. All of these shall be
encapsulated within an Eclipse plug-in environment. The tasks initially identified
for support include distributed story cards, virtual daily meetings, component
integration and most importantly, pair programming.

3 Research Method

This research is largely based on empirical process. After thoroughly researching
the requirements of agile programmers and distributed software engineering, I
intend to iteratively implement and evaluate features for the distributed agile
environment. Once the entire system is complete a thorough evaluation of the
system through experimentation is planned followed by improvement (where
required) and then further experimentation etc.

This research is focused on a bottom-up approach, that is, the development
of a tool for supporting distributed agile practice; the development of a process
for this tool and ensuring this process fits within the “Liberal” paradigm are
secondary. However, there is an element of top-down approach, in that it has
been possible to form some high-level descriptions of the “Liberal” paradigm
and processes within it.

From the agile paradigm the “Liberal” paradigm inherits some of the high-
level principles of the Agile Manifesto. However, these processes need to be more
adaptable than the current agile processes to ensure that the principles do not
conflict. For example, it may not be desirable to allow customer collaboration
to restrict code production. From the libre paradigm the “Liberal” paradigm
inherits the low-level freedoms that libre practitioners are afforded. It is also im-
portant for the “Liberal” paradigm to inherit scalability from the libre software
paradigm.

4 Conclusions

We can infer from many agile methods that communication must take place
in a collocated manner. This project aims to allow the distribution of effective
agile practice by providing tool support that fits the “Liberal” paradigm without
constraining its usage within specific software processes.

The main focus of this research is the creation of a tool that aids the distri-
bution of effective agile practice. This tool must not only support agile practice
but also offer support for the communication and awareness overheads that dis-
tribution causes. It is intended that the tool developed within this research will
aid the distribution of effective agile practice in a manner that is relevant to
both industrial practitioners and libre software practitioners and thus broaden
the usefulness of the agile methods.

{c.Thomson,m.holcombe}@dcs.shef.ac.uk
http://www.dcs.shef.ac.uk

•

•

•

•

•

•
•

M.Holcombe@dcs.shef.ac.uk
http://www.genesys.shef.ac.uk/

M.Holcombe@dcs.shef.ac.uk
http://www.genesys.shef.ac.uk/

<?xml version=”1.0” encoding=”ISO-8859-1”>
<!DOCTYPE PROJECT [
 <!ELEMENT PROJECT (NAME,PROJPATH,SCID,TESTID,
NOTES,AUTHORS,DATE,FUNCTIONS+)>
 <!ELEMENT NAME (#PCDATA)>…
(NAME,CODETYPE,PRIORITY,DIFFICULTY,KEYWORDS<INPUTS,OUTPUTS,ME
MORY,DESCRIPTION)>…
]>

Author Index

Abrahamsson, Pekka 189
Aceves Gutiérrez, Luis Carlos 206
Adams, Mack 267
Adams, Paul 321
Ally, Mustafa 82
Andersson, Johan 210
Aveling, Ben 235

Bache, Geoff 210, 294, 296
Bacon, Tim 292, 303
Beck, Kent 201, 276, 287
Bojarski, Jacek 247
Boldyreff, Cornelia 321
Bossavit, Laurent 288, 290
Braithwaite, Keith 180
Bustard, David 251

Canfora, Gerardo 92
Canseco Castro, Enrique Sebastián 206
Cau, Alessandra 48, 317
Chilley, Carl 267
Chivers, Howard 57
Cimitile, Aniello 92
Concas, Giulio 48
Cookson, Ammon 1
Cowling, Tony 218, 222
Cunningham, Ward 137

Darroch, Fiona 82
Davies, Rachel 263, 292
Dubinsky, Yael 19, 74
Dwolatzky, Barry 259

Eckstein, Jutta 200

Favaro, John 199
Flaxel, Amy 1
Fraser, Steven 263, 267
Freeman, Steve 276
Freire da Silva, Alexandre 10

Gaillot, Emmanuel 288, 290
Ge, Xiaocheng 57
Geras, Adam 109, 239
Gheorge, Marian 218

Hazzan, Orit 19, 74
Holcombe, Mike 214, 218, 222, 255,

263, 323, 327, 329
Hoover, Dave 303
Hussman, David 267, 305

Ipate, Florentin 214

Joyce, Tim 180

Kalra, Bhavnidhi 255, 323
Karn, John 218, 222
Keenan, Frank 251
Kelly, Steven 311
Keränen, Heikki 189
Keren, Arie 19
Kolovos, Dimitrios S. 226
Kon, Fábio 10
Kushmerick, Nicholas 162
Kwan, Andrew 145

Lafontan, Olivier 274
Larsen, Diana 281
Lever, Simon 325
Love, James 109

Martin, Alan 145
Martin, Angela 263, 267
Maurer, Frank 127
McCarey, Frank 162
McMunn, Dave 28
Melis, Marco 48
Melnik, Grigori 127
Middleton, Peter 1
Miller, James 109, 145, 239
Mlotshwa, Sifiso 259
Mnkandla, Ernest 259, 315
Moore, Ivan 274
Mugridge, Rick 137, 263, 278, 294, 296

Nawrocki, Jerzy 230
Nielsen, Jeff 28
Nolan, John 276
Nowakowski, Wiktor 247

332 Author Index

Ó Cinnéide, Mel 162
Olek, �Lukasz 230

Paige, Richard F. 57, 226
Passoja, Ulla 171
Peeters, Vera 274, 308
Pierce, Duncan 263
Pietrzak, B�lażej 154
Pikkarainen, Minna 171
Polack, Fiona A.C. 226
Poole, Charlie 285
Poppendieck, Mary 267, 280, 302
Poppendieck, Tom 263, 280, 302
Putman, David L. 305

Ramachandran, Muthu 202
Read, Kris 127
Robinson, Hugh 100
Ruanova Hurtado, Mauricio 206

Sandberg, Jan-Erik 299
Schrier, Peter 308
Schwaber, Ken 277
Scotland, Karl 273
Sharp, Helen 100
Sillitti, Alberto 243
Simons, Anthony J.H. 118

Sk̊ar, Lars Arne 299
Śmia�lek, Micha�l 38, 247
Smith, Michael 109, 145, 239
Sommerville, Ian 198
Straszak, Tomasz 247
Striebeck, Mark 267
Succi, Giancarlo 243, 263
Swan, Brian 294, 296
Syed-Abdullah, Sharifah Lailee 218, 222

Tappenden, Andrew 239
Thomson, Chris 323
Tingey, Fred 66, 276
Toleman, Mark 82
Torteli, Cicero 10
Turnu, Ivana 48

Van Cauwenberghe, Pascal 274
Varma, Susheel 327, 329
Verdoes, Claes 210
Visaggio, Corrado Aaron 92

Walter, Bartosz 154
Wilking, Dirk 319
Wills, Alan Cameron 311

Yu, Jiang 239

	Frontmatter
	Experience Reports
	Lean Software Management Case Study: Timberline Inc.
	XP South of the Equator: An eXPerience Implementing XP in Brazil
	Introducing Extreme Programming into a Software Project at the Israeli Air Force
	The Agile Journey

	New Insights
	From User Stories to Code in One Day?
	Evaluate XP Effectiveness Using Simulation Modeling
	Agile Security Using an Incremental Security Architecture
	Quantifying Requirements Risk

	Social Issues
	Social Perspective of Software Development Methods: The Case of the Prisoner Dilemma and Extreme Programming
	A Framework for Understanding the Factors Influencing Pair Programming Success
	Empirical Study on the Productivity of the Pair Programming
	The Social Side of Technical Practices

	Testing
	A Survey of Test Notations and Tools for Customer Testing
	Testing with Guarantees and the Failure of Regression Testing in eXtreme Programming
	Examining Usage Patterns of the FIT Acceptance Testing Framework
	Agile Test Composition

	Tools
	E-TDD -- Embedded Test Driven Development a Tool for Hardware-Software Co-design Projects
	Multi-criteria Detection of Bad Smells in Code with UTA Method
	An Eclipse Plugin to Support Agile Reuse

	Case Studies
	An Approach for Assessing Suitability of Agile Solutions: A Case Study
	XP Expanded: Distributed Extreme Programming
	A Case Study on Naked Objects in Agile Software Development

	Invited Talks
	Extreme Programming for Critical Systems?
	That Elusive Business Value: Some Lessons from the Top
	Agility -- Coming of Age
	Another Notch

	Posters and Demonstrations
	A Process Improvement Framework for XP Based SMEs
	Standardization and Improvement of Processes and Practices Using XP, FDD and RUP in the Systems Information Area of a Mexican Steel Manufacturing Company
	Multithreading and Web Applications: Further Adventures in Acceptance Testing
	Using State Diagrams to Generate Unit Tests for Object-Oriented Systems
	The Positive Affect of the XP Methodology
	Adjusting to XP: Observational Studies of Inexperienced Developers
	An Agile and Extensible Code Generation Framework
	UC Workbench -- A Tool for Writing Use Cases and Generating Mockups
	Desperately Seeking Metaphor
	Agile Testing of Location Based Services
	Source Code Repositories and Agile Methods
	Writing Coherent User Stories with Tool Support
	BPUF: Big Picture Up Front
	Agile Development Environment for Programming and Testing (ADEPT) -- Eclipse Makes Project Management eXtreme
	Tailoring Agile Methodologies to the Southern African Environment

	Panels and Activities
	XP/Agile Education and Training
	Off-Shore Agile Software Development
	The Music of Agile Software Development
	The XP Game
	Leadership in Extreme Programming

	Tutorials
	Agile Project Management
	Expressing Business Rules
	Introduction to Lean Software Development
	The Courage to Communicate: Collaborative Team Skills for XP/Agile Teams
	Test-Driven User Interfaces
	The XP Geography: Mapping Your Next Step, a Guide to Planning Your Journey

	Workshops
	Lightning Writing Workshop Exchange Ideas on Improving Writing Skills
	The Coder's Dojo -- A Different Way to Teach and Learn Programming
	Informative Workspace
	Exploring Best Practice for XP Acceptance Testing
	Hands-on Domain-Driven Acceptance Testing
	How to Sell the Idea of XP to Managers, Customers and Peers
	Agile Contracts
	When Teamwork Isn't Working
	The Origin of Value: Determining the Business Value of Software Features
	The Drawing Carousel: A Pair Programming Experience
	Agile Development with Domain Specific Languages

	Ph.D. and Master's Symposium
	A Thinking Framework for the Adaptation of Iterative Incremental Development Methodologies
	Exploring XP's Efficacy in a Distributed Software Development Team
	Agile Methods for Embedded Systems
	Tool Support for the Effective Distribution of Agile Practice
	The Software Hut -- A Student Experience of eXtreme Programming with Real Commercial Clients
	Eclipse Platform Integration of Jester -- The JUnit Test Tester
	Extreme Programming: The Genesys Experience
	Shared Code Repository: A Narrative

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

